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FOREWORD

Training programs provide students with deliberately selected learning experiences, so they can acquire
and retain knowledge and skills. Intelligent Tutoring Systems (ITSs) are computer-based training
systems that mimic human instructors to provide automated, one-on-one instruction. Although ITSs
typically adapt their instruction in response to individual student differences fo some degree, most ITSs
developed so far have applied a limited set of strategies for doing so, focusing primarily on microadaptive
algorithms that consider the student's solution history.

However, the most effective instructional method for one group of students may not be the best for other
types. Thus, the effectiveness, of instructional systems can be improved by incorporating algorithms that
adapt instruction to individual differences. Although much of the research in learning and individual
differences so far has focused on interactions between student aptitude level and learning environment,
many other student attributes can also be usefully considered when making instructional decisions. These
other attributes include cognitive styles, personality types, mental and emotional state, student
experiences, and learning style. Consideration of these other attributes, however, requires the
development of adaptive instructional systems (AIS) models that specify the data and algorithms required
to assess (or estimate) these student attributes and apply these estimates to make better instructional
decisions.

During this Phase I SBIR project, we developed a generic model of adaptive instructional systems that is
designed to be broadly applicable across a wide range of training domains. We then applied this generic
model as a framework for describing how AIS capabilities could be added to the Intelligent Flight Trainer
(IFT), a helicopter training simulator deployed at Ft. Rucker, Alabama. Finally, we developed a limited,
proof-of-concept software prototype to illustrate some elements of this model. This project provides a
concrete test case for exploring the utility and feasibility of implementing AIS capabilities, and it provides
a platform for exploring the AIS design issues in other training domains. We propose to continue AIS
research in command and control domains, by enhancing existing tutoring systems developed by SHAI to
incorporate AIS capabilities.
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AN INTELLIGENT TUTORING SYSTEM APPROACH TO ADAPTIVE INSTRUCTIONAL
SYSTEMS

EXECUTIVE SUMMARY

Research Requirement:

This research is motivated by the importance of incorporating sophisticated adaptive strategies within
intelligent tutoring systems to improve their effectiveness. By adaptive instruction systems (AIS), we
refer to intelligent tutoring systems that select and present diagnostic and learning experiences that are
tailored to each student's individual characteristics, to support more effective learning. Generic and
domain-specific models of adaptive instructional systems can:

e Help researchers identify important research issues that relate to adaptive instruction. For
example, the AIS model may suppose relationships among observable data, learning and
cognitive styles, personality types, mental and emotional state, instructional strategies, and/or
student performance that deserve experimental validation.

e Provide guidance to researchers, knowledge engineers, and software designers when designing
and implementing AIS models and software systems for other training domains. For example,
these models can help identify potential adaptive instructional strategies, observable data, and
student model attributes that should be incorporated within specific AlSs.

e Encourage the development of AIS software modules and knowledge bases that can be re-used
across different, domain-specific AISs. We believe that many AIS strategies are broadly
applicable across training domains, so it may be possible to create re-usable AIS software
modules that implement these generic strategies.

Procedure:

During this six month phase I SBIR project, Stottler Henke Associates, Inc. (SHAI):
e Reviewed relevant psychology and intelligent tutoring systems research literature,

e Reviewed U.S. Army training documents and lay press books on helicopter piloting to become
familiar with the training domain and current training procedures,

e Visited Ft. Rucker Army base on April 14 and May 16, 2000 and interviewed helicopter
instructor pilots (IPs) to become familiar with training practices.

e Designed the generic AIS model,
o Identified ways in which AIS capabilities could be applied to helicopter pilot training, and

¢ Developed a limited software prototype.

During the phase I option period, Stottler Henke Associates, Inc. (SHAI) began the Phase II effort by:
e Reviewing MAMIDS literature,
¢ Reviewed research literature on personality and learning styles,
e Determined how that work could be incorporated into the Phase II System, and

e Determined how the C41 ITS could benefit from increased adaptive capabilities.



Findings:

Adaptive Instructional Systems (AIS) capabilities show promise as an effective method of improving
automated instruction, by adapting instructional decisions to individual differences among students. The
generic AIS model appears plausible, feasible, and useful, and the software prototype provides additional
encouragement. In addition, some of the AIS knowledge structures and algorithms may be generic across
different, domain-specific AIS systems, making it possible to re-use some software and data objects
across AIS systems.

Utilization and Dissemination of Findings:

We propose to use the AIS model developed during this project as the basis for further research in AIS
capabilities in other domains, such as command and control. Specifically, we propose to continue this
research using Phase II SBIR funding to add adaptive instructional capabilities to existing tutoring
systems developed by SHALI for teaching tactical decision-making and command and control. These
systems include the Tactical Action Officer (TAO) ITS developed by SHAI for the U.S. Navy, and the
C4I ITS under development by SHAI for STRICOM that interfaces with the FBCB2 command and
control system.
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1.  Research Objective

Training programs provide students with deliberately selected learning experiences, so they can
acquire and retain knowledge and skills. These experiences include natural feedback provided by
training simulations as well as presentations, explanations, hints, feedback, and other
interventions selected and presented by the instructor. Intelligent Tutoring Systems (ITSs) are
computer-based training systems that mimic human instructors to provide automated, one-on-one
instruction. Although ITSs typically adapt their instruction in response to individual student
differences to some degree, most ITSs developed so far have applied a limited set of strategies for
doing so, focusing primarily on microadaptive algorithms that consider the student's solution
history.

However, the most effective instructional method for one group of students may not be the best
for other types, and the effectiveness of instructional systems can be improved by incorporating
algorithms that adapt instruction to individual differences. Much of the research in automated
instruction and individual differences so far has focused on interactions between student aptitude
level and learning environment. However, many other student attributes can also be usefully
considered when making instructional decisions, such as cognitive styles, personality types,
mental and emotional state, student experiences, and learning style. Consideration of these other
attributes, however, requires the development of adaptive instructional systems (AIS) models that
specify the data and algorithms required to assess (or estimate) these diverse student attributes
and apply these estimates to make better instructional decisions. The development of generic and
domain-specific models of adaptive instructional systems can:

e Help researchers identify important research issues that relate to adaptive instruction. For
example, the AIS model may suppose relationships among observable data, learning and
instructional strategies, and/or student performance that deserve experimental validation.

e Provide guidance to researchers, knowledge engineers, and software designers when
designing and implementing AIS models and software systems for a wide range of
training domains. For example, these models can help identify potential adaptive
instructional strategies, observable data, and student model attributes that should be
incorporated within specific AISs.

¢ Encourage the development of AIS software modules and knowledge bases that can be
re-used across different, domain-specific AISs. We believe that many AIS strategies are
broadly applicable across training domains, so it may be possible to create re-usable AIS
software modules that implement these generic strategies.



2.  Project Summary

During this Phase I SBIR project, Stottler Henke Associates, Inc. (SHAI) developed a generic
model of adaptive instructional systems that is designed to be broadly applicable across a wide
range of training domains. We then applied this generic model as a framework for describing
how AIS capabilities could be added to the Intelligent Flight Trainer (IFT), a helicopter training
simulator deployed at Ft. Rucker, Alabama. Finally, we developed a limited, proof-of-concept
prototype to illustrate elements of this model. This project provided a concrete test case for
exploring the utility and feasibility of implementing AIS capabilities, and it provides a platform
for exploring the AIS design issues in other training domains. We propose to continue AIS
research in command and control domains, by enhancing existing tutoring systems developed by
SHALI to incorporate AIS capabilities.

During this project, SHAI performed the following tasks:
* Reviewed relevant psychology and intelligent tutoring systems research literature,

e Reviewed U.S. Army training documents and lay press books on helicopter piloting to
become familiar with the training domain and current training procedures,

e Visited Ft. Rucker Army base on April 14 and May 16, 2000, and interviewed helicopter
instructor pilots (IPs) to become familiar with training practices,

e Designed the generic AIS model,

o Identified ways in which AIS capabilities could be applied to helicopter pilot training,
and

e Developed a limited software prototype that illustrated some elements of the AIS model.



3. AIS Model

3.1 AIS Software Architecture

Figure 1 shows our generic AIS software architecture.

Student Background
Information: test results,
history

Adaptive Instructional System

Student Observables:
student communications,
actions, simulation
outcomes, physiological
measures.

AIS User
Interface

Student
Assessment
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Instructional

hints, feedback

Planner

Figure 1 - AIS software architecture. (arrows show inferential and decision-making

relationships)

AIS is comprised of the following software modules (shown in Figure 1 as ovals) and data objects

(shown as rectangles):

e Simulator / AIS User Interface - This software module includes the hardware/software
simulator or interactive problem-solving environment with which the student interacts. It
also includes the user interface by which the tutoring component of the AIS and the

student exchange information.

e Instructional Decisions - These decisions include the selection of Simulator parameters
or scenarios presented by the Simulator. These decisions also include selection of the
content and format of instructional interventions such as hints, feedback, direction
instruction, and questions presented through the AIS User Interface.




Instructional Planner - This software module applies adaptive instructional strategies to
make instructional decisions based on its student model that includes assessments of the
student's performance and estimates of the student's skills, knowledge, personality,
cognitive abilities and styles, learning preferences, physical, mental, and emotional state.

Student Model - Ideally, the Instructor Model would base its decisions on the "actual”
attributes of the student. However, these attributes represent internal states of the student
that can only be estimated. The Student Model represents these estimates, as well as
objective evaluations of the student's performance.

Instructional Goals - The AIS pursues two primary goals: providing the student with
effective learning experiences and assessing the student's skills, knowledge, and other
student model attributes to provide a valid basis on which to select learning experiences.
To prioritize and pursue these goals, the AIS reasons using explicit knowledge
representations of goals, subgoals, and plans which achieve each type of goal.

Student Assessment - This software module maintains the Student Model by estimating
student attributes from observable data collected by the AIS and background information
about the student. This assessment can also be biased by current estimates of other
student attributes stored in the Student Model.

Student Observables - This data includes information communicated by the student to
the AIS, actions carried by the student within the Simulator, simulation outcomes caused
by student actions, and physiological measures.

The AIS can be described as an intelligent agent because it combines the ability to assess its
environment (i.e., assess student attributes from observables) and carry out actions on the
environment (i.e., make instructional decisions).

This architecture is generic and would be elaborated for each domain-specific AIS. To develop a
domain-specific AIS, the designer must populate the software modules and data models with
algorithms and knowledge representations that achieve the system's training objectives within
schedule and budget constraints. Although some of the algorithms and data objects to be
included in an AIS will be specific to each specific training domain, many algorithms and data
objects will be generally applicable to a broad set of training domains, as described in the
remainder of section 3.

3.2

Student Model

The AIS designer must select student model attributes that can be:

Estimated by the Student Assessment Module from Student Observables and Student
Background Information, and

Applied effectively by the Instructor Model to adapt Instructional Decisions to individual
differences.

This section describes generally useful student model components that can be estimated and
applied effectively to control instructional decision-making.



3.21 Knowledge

Knowledge is a prerequisite for any skill: before a task can be performed, the subject must
possess the knowledge needed to understand the relevant facts, procedures, and cause-and-effect
relationships. However, practice is typically required to improve the speed, accuracy, and
automaticity with which this knowledge can be recalled and applied to solve problems and
perform tasks. For example, Anderson's ACT* model of learning (1983) posits three stages of
learning: declarative knowledge, procedural skills, and automatic skills.

A number of formalisms have been advanced for representing this knowledge, including
production rule-based systems (Anderson, 1983) and schema-based systems that reason using
specific episodes (cases) or prototypes (scripts) (Schank, 1977). Many software systems have
been developed that employ these representations.

Many instructional theories and systems presume that the instructor or instructional system
possesses a model of the knowledge structures required by the student, and that the goal of the
instruction is to transmit these knowledge structures to the student. These approaches are most
appropriate when the task is relatively procedural, such as Algebra, so that well-accepted facts
and procedures can be specified for the domain. By contrast, constructivists believe that learning
experiences should enable subjects to construct their own individual knowledge structures that
are compatible with each subject's unique experiences and the existing knowledge structures
(Jonassen, 1999). Thus, the goal of constructivist instruction is to help the student think about the
experience to facilitate knowledge construction. For example, the instructor could make
observations and pose questions to stimulate the student's thinking. Constructivist approaches are
appropriate in complex domains in which it is difficult to circumscribe the knowledge needed to
perform a task into well-isolated set of facts and procedures.

3.2.2  Skills

In our AIS model, a skill is:
¢ the ability to carry out a task,
e that can be acquired through training, and

e requires the application of a combination of perceptual, cognitive, and motor processes.

The level of each skill for each student can be characterized by its:

e proficiency - the subject's ability to attain high levels of task performance, as measured
by speed, accuracy, etc.

® automaticity - the subject's ability to perform a task "automatically”, in parallel with other
tasks with little apparent effort or allocation of attention.

Tasks are often composed of simpler subtasks that must be mastered and applied sequentially
and/or in parallel. Parallel execution of these tasks may require overlearning of the subtasks so
that each subtask can be performed proficiently with few attentional resources required.

At SHAL, we have developed practical, intelligent tutoring systems that employ relatively shallow
representations of knowledge and skills. These representations support case-based instructional
systems in which it is unnecessary to build an expert system that automatically finds solutions to
problems in the domain. Instead, case-based instructional systems require only enough



knowledge of the domain to support reasoning about instructional decisions. This knowledge
may include skill-subskill relationships (e.g., skill S; requires subskills S,, S;, and S) and pre-
requisite knowledge relationships (e.g., skill S; has pre-requisite knowledge K;, K;, and K3,

3.2.3 Task Performance

A student's performance describes how well he or she performed a task. There are several types
of criteria on which these assessments can be based.

The traditional measures of task performance are speed and accuracy. For tasks where the
desired result of performing the task may be complex, it may be useful to view performance as
the degree to which the student achieved the desired result or goal state. In a sense, this can be
thought of as a type of accuracy measurement. For example, the performance of a student
helicopter pilot carrying out a specific maneuver can be quantified by the difference between
actual and target values of the flight variables over time such as altitude, heading, and x-y
position.

Although this type of performance assessment is frequently straight-forward to implement, it does
not always provide sufficiently detailed information needed to identify the student model
attributes such as subskills or pre-requisite knowledge in which the student is weak. This detailed
information is needed to focus instruction on the underlying causes of the weak task performance.
Acquiring this detailed information may require the (human or automated) instructor to carry out
diagnostic actions and/or estimate these attributes using other observable data and student model
estimates.

Performance assessment can also be based on the degree to which the student's actions or
decision-making conforms to the "correct solution.” Use of this criteria presumes that there is
just one (or at most a small number) of correct solutions with which the student's actions can be
compared. This is not true of helicopter piloting because different combinations of flight control
actions can achieve the desired outcome. However, in many domains it may be plausible to
assume that there is a single correct solution to a given problem, at least in a given scenario. This
criteria also assumes that the significant student actions can be observed. However, in many
domains, the subject must carry out many (unobservable) perceptual or cognitive processes prior
to carrying out each observable action. In these domains, assessment of the observable actions
may provide only partial insight into whether the subject is carrying out the correct sequence of
actions.

Performance assessment can also include characteristic error patterns observed in the student's
actions. For example, an instructor may observe that a student helicopter pilot tends to
overcontrol the cyclic when carrying out a maneuver. By augmenting its overall assessment of
the student's task performance with specific error patterns, the instructional system can identify
knowledge or skill deficiencies with more precision, and therefore select highly targeted
instructional interventions to address the student's performance problems.

3.2.4 Physical, Emotional, and Mental State

A subject's task performance level is correlated with his or her skill proficiency, but it is also
affected by the subject's current mental or physical state. For example, a subject will perform
more poorly if he or she is mentally or physically fatigued, task-overloaded, or unable to devote
his or her full attention to the task. Emotional state can also affect performance. For example, a



student who is stressed or anxious may fixate on certain stimuli and become less able to respond
to other stimuli.

3.2.5 Abilities and Mediators

Considerable research in psychology has been devoted to searching for relationships between
general (task-independent) abilities and task-specific performance or skill-acquisition. However,
there are many theories about the number and type of these general abilities. Researchers
disagree as to whether there is a single general intelligence (Herrnstein, 1994); two intelligences:
fluid and crystallized (Catell, 1971); three (Eysenck, 1986); or many (Gardner, 1983).

We do not believe that it is necessary to resolve this general issue in order to design effective
adaptive instructional systems. Instead, we take a pragmatic approach: the set of abilities to be
modeled in an AIS should depend only upon whether individual differences in those abilities can
be estimated and usefully incorporated within the AIS to improve instructional decision-making.

Therefore, the set of abilities modeled might include both broad and highly specific
characteristics and may vary across AISs designed for different training domains. Broad
characteristics include:

¢ Basic cognitive abilities: perceptual, situation assessment, decision-making, motor
control

e Cognitive mediators: attention, short-term memory, long-term memory
e Reasoning methods: pattern recognition, inference, recall

e Associative learning (AL) skills: verbal, quantative, spatial (Anderson, 1983)

3.2.6 Learning Preferences, Cognitive Styles, and Personality

The subject's response to different training methods and learning experiences, and therefore his or
her skill and knowledge acquisition, is affected by the subject's personality, cognitive style, and
learning preferences.

Examples of learning preferences include:

¢ Part-task vs. whole-task training - Complex tasks require the combined execution of
simpler sub-tasks. Some students may learn faster by first practicing each subskill
individually and then integrating the subskills later on, whereas other student's may learn
faster by practicing the entire task from the beginning. In general, there may be more
than one way to decompose a task into subtasks. For example, hovering a helicopter can
be decomposed into the subtasks of controlling the cyclic, the collective, and the pedals.
An advantage of this task decomposition is that it is possible for an instructor (or
automated training system) to assume responsibility for one or more of the controls in
order to simplify the task. The hover task can also be decomposed into a different set of
subtasks: perceiving the helicopter's altitude, controlling the altitude, perceiving the
helicopter's xy position, controlling the position, etc. This decomposition has the
advantage that different subskills may underly each of the subtasks, so identifying the
problematic subtasks helps to identify problematic subskills.

e Self-direction vs. programmed instruction - Some students learn more quickly when
they can control the learning experiences provided by the training system. Other students



learn more effectively when the program selects the student's learning experiences.
Cronback and Snow (1977) report that high aptitude students tend to benefit from the
freedom to explore on their own, whereas low-ability students fare better when the
instructional decisions are made for them.

Rule application vs. rule induction - Training systems can vary in how they present
feedback to the student. Systems can communicate to the student the relevant rule and its
application to a specific problem (rule application), or they can communicate hints from
which the student must infer the rule application. (Shute, 1992) describes an experiment
that showed interactions among the learning environment (rule application vs. rule
induction), student associative learning skills (low vs. high), and task type (declarative vs.
procedural vs. generative design) when predicting performance.

Examples of cognitive styles include:

Dominant thinking styles (Masie, 1997) — These can be classified into the following
four categories: 1. Reflective, 2. Conceptual, 3. Practical, and 4. Creative. Although
people have dominant thinking styles, they also use different styles at different times.
These thinking styles have an implication to training. For instance, people who are pre-
dominantly conceptual in their thinking like to understand the whole picture and respond
better to structured instruction. This implies that they should be presented with overviews
before focusing on particular aspects of the domain. On the other hand, practical thinkers,
who like to focus on useful, practical information, should be presented with clear learning
objectives, and allowed to jump straight to hands-on exercises.

Case-based vs. model-driving reasoning - Some students reason predominantly by
remembering concrete episodes (or cases), whereas other subjects reason using abstract
principles, models, or rules. Although few subjects use one reasoning method to the
exclusion of the other, many subjects will prefer one method over the other and will
respond more positively to instruction delivered in the preferred form.

A subject's personality can affect his or her perceptual and cognitive processes, thereby affecting
skill acquisition and performance. For example:

Personality attributes can skew the subject's situation assessment and decision-making.
For example, an overly anxious subject may over-react to perceived threats and under-
react to possible opportunities. A cautious learner may adhere to well-practiced but sub-
optimal behavioral patterns, rather than experiment with new behaviors that may produce
better results. These relationships affect the subject's ability to acquire certain skills and
knowledge and could be considered by an instructional system when selecting lessons for
the student or when estimating the student's current mastery of knowledge and skills.

Methodologies for creating models, which relate these factors to performance, however, have
only begun to emerge. For example, Hudlicka (1999) describes a Methodology for Analysis and
Modeling of Individual Differences (MAMID). MAMID represents a generic approach for
representing cognitive, personality, and affective factors in human performance models. We are
optimistic that this methodology can help create models that relate cognitive, affective, and
personality factors to cognitive processes that affect task performance.



33 Student Assessment

Observables, such as test results, student actions, performance, communications, and
physiological measurements are causally related (directly and indirectly) to attributes of the
student such as his or her abilities, skills, knowledge, and mental state. In general, the student
attributes which are the most reliable determinants of effective, adaptive instruction, are also
those that cannot be measured directly but must be estimated by the Student Assessment module.
Figure 3 shows the causal relationships between observables (in bold boxes) and data that can
only be estimated.

abilities, personality, ,
cognitive styles,
learning preferences

test results

performance

T skills,
knowledge \h student actions,
simulation
— - outcomes
training history,
other experiences »| physical,
emotional, and
/ mental state \ communications,
current training physiological

situation measures

Figure 2 - Causal relationships among student attributes and observables

Because the relationship between observables and student attributes is many-to-many, it is
usually not possible to simply deduce the value of a student attribute from the value of an
observable measurement. For example, poor task performance may be caused by low skill
proficiency relevant to the task, but it may also be caused by fatigue or low motivation. Also,
successful performance of a task may require a combination of subskills, so an instructional
system must also determine which specific subskills are weak. Identifying the cause of
symptoms when many-to-many relationships exist, is a classic artificial intelligence problem
which has been tackled using techniques such as rule-based programming, case-based reasoning,
and Bayesian inference.

3.3.1 Assessing Performance

Performance can be assessed by evaluating the actions performed by the student or evaluating the
states (or conditions) achieved by the student. For example, a command and control training
system might evaluate the student based on the outcome of the engagement or on the student's
actions.

These actions can be discrete (e.g., flipping a switch, issuing an order) or they can vary
continuously over time (e.g., the position of the helicopter collective vs. time). State changes
include those that, by definition, result from an action (e.g., flipping a switch causes the switch to
be in the ON position) as well as states that are achieved by the action (e.g., flipping the heater
switch causes the temperature of the heater to rise only if power is supplied to the heater).



Performance assessment based upon continuously-varying actions and/or states requires analysis
of time-series data to identify significant time-series data patterns to estimate proficiency and
detect error modes. This time-series analysis may be combined with symbolic pattern matching
to reason about data patterns found in the time-series. For example, the "over-controlling” of the
cyclic can be detected by detecting symptomatic patterns in the helicopter's trajectory.

Most intelligent tutoring systems have been developed for training domains where the actions are
discrete. A number of methods have been developed for these types of domains, including:

¢ Model tracing - The system encodes a cognitive model, encoded as a set of production
rules that is capable of solving problems in the way students are to solve the problems.
This model is then used as the basis for evaluating student performance, and the system
strives to explain incorrect solutions submitted by the student as perturbations on this
model (e.g., missing or buggy rules). Specifically, the system tries to identify the set of
rules (including some rules that may be incorrect) that the student might have applied that
would yield the incorrect answer. Pursuing this approach is challenging (and usually
expensive) because it requires the development of a cognitively plausible expert system
that solves problems in the domain. This approach therefore is limited to relatively
closed domains in which it is feasible to develop such an expert system. In addition,
unambiguous interpretation of student actions is difficult because more than one
sequence of production rules can produce a particular surface behavior that matches that
of the student's.

e (Case-based reasoning - SHAI has pursued case-based (or scenario-based) approaches to
automated instruction where an instructor specifies a solution (or range of solutions) that
are appropriate to each scenario presented to the student. Thus, the system is not
necessarily capable of automatically generating solutions to problems in the domain (as
in the model-tracing approach.) Instead, each scenario encodes one or more pattern-
recognizers that detect sequences of actions and states that indicate the mastery (or lack
of mastery) of certain knowledge or skills. ITS authoring tools enable instructors or
subject matter experts to specify these pattern recognizers easily via graphical user
interface.

3.3.2 Estimating Knowledge and Skills

Fine-grained assessment of knowledge and skills enables the training system to select highly
specific instructional interventions that focus on the skills in need of improvement or the
knowledge that requires reinforcement. For example, a skills assessment like "Student Bob is a
poor helicopter pilot" is so broad that it provides little guidance for making instructional
decisions. An assessment like "Student Bob has trouble with hovering" provides at least a
starting point for focusing the instructor's attention. However, the instructor would still need to
identify the specific reasons why the student's hovering skills are weak in order to determine the
most appropriate instructional interventions.

In general, fine-grained estimates of student skills require more detailed assessments of student
performance. For example, if the assessment of the student's performance hovering the helicopter
simply produces a pass/fail rating, it is difficult to infer much about the student's skills, except
that his or her hovering skill is high or low. However, if the performance assessment can
determine error modes (e.g., overcontrolling, undercontrolling) or deficiencies in specific
parameters of the task (e.g., maintaining altitude), the instructional system can identify candidate
subskills that may be deficient.
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Fine-grained knowledge and skills assessment cannot always be performed by assessing the
performance level of a task that applies only the specific skill, for several reasons. First, there
might not be a measurable task that corresponds to the skill. For example, one of the skills
required to hover a helicopter is to maintain awareness of the height of the aircraft off the ground,
requiring perceptual skills, and an ability to estimate the aircraft's distance off the ground from
these visual cues. However, it may be difficult to assess these perceptual and distance estimation
skills in isolation. In addition, it is inefficient to teach and estimate very fine-grained skills one-
at-a-time.

To support more efficient learning, the AIS must be able to reason about skills and subskills. If
the student's proficiency in S; is weak, the reason may be that the student has not become
sufficiently proficient in-one or more of the skill's subskills. Or, it may be that the student has not
overlearned the subskills sufficiently to apply them in combination without becoming task-
overloaded. Thus, the student must increase the automaticity with which he or she can perform
the subskills. This reasoning leads to the following generic assessment strategies:

If the proficiency in skill S1 is low,
Then a possible cause may be that the proficiency of one of its
subskills is low.

If the proficiency in skill S1 is low,
Then a possible cause may be that the automaticity of one of its
subskills is low.

Figure 3 illustrates this strategy graphically. To determine whether a skill has become
overlearned (automaticity is high), measure the task's performance when only partial attention can
be devoted to the task, as shown by the vertical gray bar. If the task has been overlearned, the
student's performance will approximate the benchmark performance level when full attention can
be paid. If the task has been learned but not overlearned, the partial-attention performance level
will be significantly below the benchmark performance level.

Overlearned - proficiency and automaticity are high

Learned - proficiency is high, automaticity is low

Not yet learned - proficiency is low

Performance

Attention

Figure 3 - Performance vs. attention by skill proficiency and
automaticity
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If a subject's proficiency in a skill is high, he or she can attain high performance when devoting
attention to tasks that require the skill. However, in order to estimate the automaticity of a skill,
the AIS can assess task performance when the task is carried out in parallel with another task that
requires attentional resources. This yields the generic assessment strategy:

To estimate the automaticity of a skill, measure the difference
between the performance of the skill in isolation and the
performance of the skill in combination with another task.

3.3.3 Estimating Physical, Emotional, and Mental State

With current technology, it is infeasible (or at least cost-prohibitive) for an AIS to rely upon
vision or speech recognition to estimate the subject's physical, emotional, or mental state as a
person would. However, an AIS can estimate these attributes by combining evidence provided
by: ‘

¢ physiological measures,

e the system's knowledge of the student's current situation and recent history (e.g., the
student is likely to be fatigued because he or she has been performing difficult hovering
maneuvers for the past two hours),

o the system's estimate of the subject's slowly-varying attributes, such as personality, and
mental and physical ability, and

e patterns detected in the subject’s actions that indicate (or suggest) certain states,
especially when those actions are compared with typical patterns of action carried out by
the subject.

3.3.4 Estimating Abilities and Mediators

Test batteries administered before or during the training program can estimate these slowly
varying attributes.

3.3.5 Estimating Personality, Cognitive Styles, and Learning Preferences

These attributes usually vary slowly and can be estimated by test batteries administered before or
during the training program if there are known correlations between the test measurements and
the personality, cognitive style, or learning preference attributes.

The AIS can re-assess the set of learning preferences assumed for the student if the student's
actual learning rate falls short of the expected rate, based on normative and individual
determinants of the learning rate. When the AIS hypothesizes that the student’s learning
preference may be different than was previously assumed, it can design and perform
"experiments" to test whether the student has a different learning preference by administering the
learning method that is compatible with the new, hypothesized learning preference and checking
whether or not the new learning method yields improved results.

34 Instructional Planner

Most ITSs use simple algorithms to select instructional decisions based upon relatively few
attributes of the student. An AIS, however, will consider many more attributes and will pursue
many more instructional goals to optimize the student's learning and retention. This level of
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sophistication will require the AIS Instructional Planner to make instructional decisions by
processing explicit knowledge representations of instructional goals and plans. Automated
planning is another classical discipline within artificial intelligence.

3.4.1 Instructional Goals

The AIS has two primary instructional goals:
e select and provide learning experiences to the student that result in effective learning, and

e assess the student's skills, knowledge, and other student model attributes to provide a
valid basis on which to select learning experiences.

To pursue these high-level goals, the Instructional Planner will create and pursue more specific,
lower-level goals, such as presenting a practice experience for skill ¢ increasing/decreasing the
student's stress-level to an optimum level, or estimating the student's proficiency in skill S,. High-
level goals may be pursued over longer periods, spanning the length of the training program or
perhaps the student's entire career. Other goals may be short-term and possibly identified and
pursued opportunistically during the execution of a training task.

3.4.2 Instructional Decisions

To achieve these primary instructional goals, the AIS makes Instructional Decisions to select and
configure tasks or exercises for the student to perform, to provide learning experiences to the
student or to provide diagnostic information about the student for the AIS. There are many
generic strategies that can be employed, such as:

1. If the student is weak in a skill, present the student with opportunities to practice tasks
that employ the weak skill or are otherwise effective ways of improving those skills,

2. If the student is weak in a skill, create a goal of determining whether a possible cause
might be a subskill with low proficiency or automaticity,

3. Provide consistent practice opportunities to help the student learn a skill. For example,
the AIS could provide the student with repeated opportunities to practice hovering under
similar conditions,

4. To minimize over-specific learning and widen the student's "performance envelope”, vary
parameters of the task. For example, after the student achieves moderate proficiency
performing a hover task, the AIS could vary the position and heading of the hover task to
prevent the student from relying upon incidental visual cues that are present only in the
original hover task,

5. Consider learning decay effects to determine the frequency with which practice
opportunities for a task should be repeated,

6. Provide the student with an appropriate level of challenge to the student, based upon the
student's proficiency in the relevant skills,

7. Maintain the student's confidence by presenting tasks that are within his or her ability to
succeed,

8. Select tasks for the student in order to obtain diagnostic information that helps the AIS
estimate student model attributes. For example, to assess the proficiency of a skill, select
a task that results in the assessment of the skill if such a lesson exists,

9. To detemine whether a weak subskill is the cause for the poor performance of a task,
compare the task performance with the performance of a second task that eliminates the
need for the subskill. For example, a student may be having trouble with hovering
because he or she cannot gauge position accurately using normal visual cues. A
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10.
11.

12.

diagnostic task might have the student hover with the aid of a graphical display that
simplifies the gauging of xy position. If performance of this diagnostic task is
significantly better than performance of the original task, we can infer that gauging xy
position was a cause of the poor hovering proficiency,

Provide demonstrations and hints to help the student successfully execute a task,

Provide quantitative feedback for tasks with quantitative performance measures, in order
to accelerate learning (Knowledge of Results principle),

If the student is busily engaged in the task, provide hints using short phrases and other
methods of minimizing the cognitive load incurred by the student when listening to
feedback.

Like any goal-directed system, the AIS Instructional Planner must pursue these goals within
resource constraints. For instructional systems, the primary resource limitation is the student's
time and attention, so the Planner must prioritize the goals it achieves and strive to achieve
multiple goals simultaneously, when possible.

Different decisions are made at different times. For example, some decision about the content
and format of feedback provided during lessons might be made continuously during the lesson.
Selection of the next lesson occurs only after the previous lesson completes.

343

Adapting Instructional Decisions to Individual Differences

The AIS can use student attributes estimated within the student model to help:

Select and prioritize instructional goals that the AIS should pursue with respect to the
student, and

Select plans (make instructional decisions) that pursue these instructional goals
effectively for the specific student.

Examples of adapting instructional decisions to individual differences include:

Attempting to increase the student's automaticity for a skill A (i.e., by providing practice
opportunities) if it appears to be the cause of poor proficiency with another skill for
which skill A is a subskill.

Explaining task steps or cause-and-effect relationships in more detail if a lack of
understanding of these steps or relationships appears to be the cause of poor skill
proficiency.

Setting the difficulty or target performance level, based upon the student's proficiency
and the student's personality traits (e.g,. the effect of a successful or unsuccessful task
execution on the student's confidence and motivation).

Modifying the task to adapt to student strengths and weaknesses in subskills of the task.
For example, weak perceptual skills may be preventing the student from learning the
procedural and motor-control aspects of the task. The AIS might present cognitive aids
that simplify the perceptual aspects of the task, to help the student focus on learning these
other aspects of the task.

14



4. Augmenting the IFT with AIS Capabilities

The Intelligent Flight Training (IFT) is a helicopter flight simulator that is augmented with
automated instructional capabilities that 1) modify the simulator's flight dynamics based on the
student's proficiency and 2) provide verbal instructional feedback to the student during simulated
flight. IFT is installed at the Army Research Institute at Ft. Rucker, AL.

4.1  Instructional Strategies Used by Human Instructor Pilots

Learning is facilitated when the student is able to achieve "meaningful repetitions” of the
maneuvers. Instructors achieve this by:

¢ Clearly explaining and demonstrating maneuvers beforehand,

¢ Applying building-block instructional strategies, so students learn simple maneuvers
which are pre-requisites for complex maneuvers. Complex maneuvers can combine
simple maneuvers (e.g., climb and turn) or are carried out under more difficult conditions
(e.g., with wind, landing/takeoff on sloped hill),

e Providing hints and feedback before and during the maneuver, to increase the likelihood
of a successful execution.

According to instructor pilots at Ft. Rucker, "80% of helicopter training is psychology.”
Instructors select maneuvers and provide verbal feedback to increase the student's confidence and
reduce his anxiety. For example, instructors can provide positive feedback when the student
performs a maneuver (or portion of a maneuver) correctly. This, of course, requires the instructor
(or automated instructional system) to have a fairly accurate model of the limits of the student's
skills, so that the instructor can notice when the student has progressed beyond these limits.

At the same time, instructor pilots must ensure that students are motivated and challenged, to
maximize their rate of learning. This entails selecting maneuvers and performance targets that
are at the edge of the student's skill proficiency. For example, the instructor would provide
instructional feedback that presumes successively higher expectations for performance levels as
the student advances through training.

Instructor pilots adapt their instruction to individual differences among students by varying:
e the rate at which they progress through the training maneuvers,
e the academic exercises they assign,
o the amount of direction they provide to guide each student's studies,
e inter-personal style, and

e rate of speech.

The remainder of section 4 describes methods of applying AIS capabilities to improve automated
helicopter pilot training.
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4.2  Selecting and Configuring Helicopter Piloting Tasks

An important and challenging type of instructional decision is selecting and configuring tasks for
the student to carry out. At any point in time, the instructional system will have many
instructional goals, where each goal support the selection of a task in order to:

e Provide an opportunity for the student to practice a task for which his or her proficiency
or automaticity is low,

e Measure the student's performance carrying out a task to estimate the student's
proficiency or automaticity for the task or subtasks.

Task configuration is the modification of attributes of the task to achieve additional instructional
goals. For example, the initial position; target speed, direction, or heading; or wind velocity can
be modified to minimize over-specific learning. Auxiliary, concurrent tasks can be added to
estimate the student's skill automaticity, by measuring the student's performance when some of
his or her attention is occupied by the concurrent task.

4.3  Setting Target Performance Levels

Students require targets levels of performance to strive for. Ideally, these targets are achievable,
but require the student to try hard. In the domain of helicopter pilot training, it is possible to set
target performance levels as tolerances on flight variables such as altitude, speed, heading, and
drift that are matched to the student's proficiency level.

4.4  Selecting Hints and Feedback

The AIS can present hints before the student attempts a maneuver to remind the student of
important concepts, to increase the likelihood that the student achieves a meaningful repetition.
The AIS can present visual and/or verbal feedback to help the student learn the relationships
between control movements and the aircraft's response. Visual aids display the state of the
aircraft in ways that make it easier for the student to assess certain aircraft states. This learning
scaffold can support both practice and diagnostic goals. For example, if it is desirable for the
student to focus on practicing motor control movements, visual aids can simplify the perceptual
task so that the student can apply his or her full attention to the motor control task. Visual aids
also help diagnose student difficulties. For example, if the student performs significantly better
with the aid than without it, the AIS can infer that the perceptual task simplified by the visual aid
is either not yet learned or not yet overlearned.
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5.

Phase I Software Prototype

We developed a limited, proof-of-concept software prototype to test, refine, and demonstrate
some of our ideas for the Instructional Planner portion of the AIS.

The prototype:
1. Reads a user-selected file containing the desired student model,
2. Selects the next lesson (or task) by:
e  Generating instructional and diagnostic goals,
e Proposing candidate lessons that achieve these instructional and diagnostic goals,
e Selecting the best lesson,
3. Adapts the lesson to other student attributes by:
e setting target performance levels to levels achievable by the student, given his or her
proficiencies,
e adds auxiliary tasks to the primary task, to test automaticity,
e Sometimes displays visual aids to simplify subtasks of a task for diagnostic or
instructional purposes,
4. Presents the lesson briefing to the student that describes the student's task and

performance objectives.

This prototype is composed of two programs that communicate via DirectX inter-process
communication, as shown in Figure 4.

Helicopter Tutor

MS Flight Visual Aid
Microsoft Flight Simulz:.tgor 1sual Auas
Simulator 2000 Interface

CLIPS engine and MS Agent

rule-base (text to

(instructional speech)

decision-making)

Figure 4 - Architecture of the software prototype

Microsoft Flight Simulator 2000. This Microsoft software product lets the user pilot a
simulated aircraft. The user controls the aircraft using a joystick and generates a cockpit
view with an instrument panel. It simulates more than a dozen aircraft, including a Bell
206B helicopter. A dial and a twistable handle on the Microsoft joystick emulate the
pedal, cyclic, and collective controls.

AIS Tutoring System. This prototype C++ program developed by SHAI for this project
receives flight variable values from Microsoft Flight Simulator using its DirectX
interface. The tutor embeds a Microsoft Agent object to generate speech from text, to
talk to the student and to explain its reasoning as it selects and configures a task for the
student to perform. The CLIPS rule engine, developed by NASA, runs the tutoring
system's rule base that implements the instructional decision-making.
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The student runs each lesson by controlling the computer's joystick to execute the task. The
Helicopter Tutor receives notification of the aircraft's flight variables, updates the visual aid if it
is displayed, and forwards these flight variable values (along with some derived values) to the
Clips rule base. The rule base provides verbal feedback to the student delivered via MS Agent
speech-to-text, considering the target performance levels selected for the student and task.

Figure 5 shows the user interface presented by the prototype.

osition & Heading

Figure 5 - Screen capture of AIS software prototype with MS Flight Simulator cockpit view
window (at right) and hover task visual aid (at left). Feedback is delivered via text-to-speech.

The cockpit view window displayed by MS Flight Simulator is on the right portion of the screen,
and two windows that comprise the hover visual aid are on the left portion of the screen. The left
hover aid window shows the current altitude as a short red vertical bar, the standard tolerance as a
blue vertical bar, and the target tolerance selected for this student and task as an overlaid green
vertical bar. The target tolerance may be wider than the standard tolerance if the student is not
yet proficient in maintaining altitude. The right hover aid display window shows the corners of a
blue rectangle corresponding to the task's standards for drift, and it displays the rectangle corners
corresponding to the target tolerances for drift in green. The helicopter is shown as a yellow icon
comprised of a circle which represents the cockpit (indicating the aircraft's xy position) and a line
that represents the fuselage (indicating the heading).
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The Helicopter Tutor relies on the following knowledge to base its instructional decisions:
¢ The student's proficiency and automaticity level for each skill,

e Expectation levels for proficiency and automaticity, based upon each student's number of
weeks of training,

e Hierarchical relationships between skills and subskills,
e Lessons associated with skills that x increase proficiency or automaticity,

e Associations between skills and lessons that help the student increase their proficiency in
those skills,

e Methods of modifying lessons to achieve additional instructional goals, such as setting
appropriate target performance levels and estimating automaticity levels of subskills.

For example, if the student's proficiency in a skill, S, is lower than expected for students with the
same amount of training, the Tutor creates a goal of increasing the student's proficiency in that
skill as well as understanding the underlying cause(s) of the low proficiency. A possible
explanation for the low proficiency might be that the student's proficiency or automaticity in a
subskill of S;is low. Thus, the tutor searches for any estimates of proficiency and automaticity of
subskills that are either low or unknown. If the estimate is low, the Tutor creates a goal of
increasing the automaticity and/or proficiency of the subskill. If the estimate is unknown, the
Tutor creates a goal of estimating the subskill's automaticity or proficiency. The Tutor then
evaluates possible lessons that achieve the various instructional goals it has created and selects
the lesson that achieves the most important goal. The Tutor then modifies the task to achieve
additional goals or to adapt it to the individual. For example, the Tutor will set target performance
levels for the student, based on the student's proficiency levels. Students with low proficiency
levels for a skill would be given appropriately low performance targets, such as wide drift
tolerances when hovering. Cognitive aids such as the hover visual aid would be enabled or
disabled, depending upon the task, the student's proficiency, and the instructional goals for the
student. The Tutor adds additional subtasks to be carried out concurrently with the main task to
estimate skill automaticity or provide practice to increase automaticity.
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6. Proposed Phase IT Work

We propose to use the AIS model developed during this project as a starting point for further
research in AIS capabilities in other domains, such as command and control. Specifically, we
propose to continue this research using Phase II SBIR funding to add adaptive instructional
capabilities to two ITS systems developed or under development by SHAI First, SHAI will
enhance the Tactical Action Officer (TAO) ITS which is described in section 8.1.1. The TAO
ITS is an existing intelligent tutoring system developed by SHAI for the U.S. Navy that teaches
tactical decision-making and command and control principles. Second, we will also extend a
prototype C4I ITS intelligent tutoring system currently under development by SHAI for
STRICOM that interfaces with the Force XXI Battle Control Brigade and Below (FBCB2)
command and control system, as described in section 8.1.2. We will extend the functionality of
the C4I ITS prototype and incorporate adaptive instructional capabilities.

We expect that the high-level AIS model described here will apply to these command and control
domains. However, this model will require significant elaboration to guide the software design of
any domain-specific ITSs. Specifically, we will need to:

o Identify the exact student attributes to be modeled in these ITSs, based upon their
usefulness and ability to be estimated in these specific domains,

¢ Identify and develop generic and domain-specific Student Assessment algorithms, and

o Identify the set of generic and domain-specific instructional strategies to be implemented
within the Instructional Planner.

We believe that these domains are excellent test beds for research in adaptive instructional
capabilities. We plan to explore the feasibility and usefulness of estimating and considering
personality, decision-making style, and general computer skills proficiency when making
instructional decisions.
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7. Phase I Option Results

7.1 MAMID

7.1.1 A Summary of Methodology for Analysis and Modeling of Individual Differences
(MAMID)

The following summary is derived from work by Hudlicka and Billingsley (1999), entitled
Representing Behavior Moderators in Military Human Performance Models. The tables included
in this summary are directly from their work as well.

Introduction

The motivation for this work is the increasing amount of resources being spent by the military on
computer based simulation and training programs, and that these programs are limited by their
inability to represent and express “normal” behavior variations. They briefly discuss the idea of
individual differences (cognitive, personality, & affective) and provide a few examples of
possible relationships between individual difference factors and performance in Table 1.1-1. The
implicit assumption is that if agents in training or simulation programs could express such
individual differences, these programs would be more realistic and effective.

Table 1.1-1: Possible Effects of Cognitive, Affective, and Personality Factors on Behavior

Maintain excessive reserves due to low-anxiety tolerance, making mobility more difficult

Fail to recognize a situation as distinct due to overly assimilating cognitive style, limiting further actions
Falsely interpret tank as enemy due to heightened anxiety, risking possible fratricide

Fail to react to a warning signal due to high risk-tolerance, risking lives of personnel

Select/ avoid a particular maneuver due to individual experience & training, rather than task requirements
Overreact to ambiguous intelligence reports due to anxiety and low risk tolerance

Prefer planning based on historical cases, due to a bias for case-based reasoning, limiting maneuver
options

Prefer goal-directed reasoning, increasing likelihood for confirmation bias and false situation assessment

Hudlicka and Billingsley developed MAMID to address the problem of representing individual
differences in models of human behavior. Their methodology is based on the four steps, as seen
in Table 1.2-1. The enhanced models of human behavior derived from this work could then be
used in computer based simulation and training programs. They go on to develop their ideas in
the context of an Army combat scenario.

In this exercise, they point out how traits such as low anxiety tolerance and high preference for

case-based reasoning might affect a tank platoon commander. They also cite relevant research
that connects these individual differences to performance.
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Table 1.2-1: Methodolo,

for Analysis and Modeling of Individual Differences

METHODOLOGY STAGE

EXAMPLE

1. IDENTITY DISTINCT COGNITIVE PROCESSES &
STRUCTURES MEDIATING SKILLED
PERFORMANCE

Processes: Attention, Perception, Inferencing (e.g.,
Situation Assessment, Decision Making)
Structures: Short & long term memory

2. DESIGN A CORRESPONDING
PARAMETERIZED COGNITIVE ARCHITECTURE

Architecture Modules: Perception, Situation Assessor,
Decision Maker, Attention, Memory , etc.

Controlling Parameters: Thresholds for matching internal
models & incoming data; Speed of processing, etc.

3. IDENTIFY COGNITIVE, AFFECTIVE, AND
PERSONALITY FACTORS AFFECTING
INDIVIDUAL MODEL PROCESSES

Cognitive: skill level, cognitive style, bias susceptibility
Affective: current affective state, temperament (e.g.,
anxiety & risk tolerance)

Personality: introversion/extraversion, leadership style,
negative/positive emotionality

4. ENCODE IDENTIFIED FACTORS IN TERMS OF
MODEL PARAMETERS & KNOWLEDGE BASES
Different parameter values induce different model
behaviors, allowing for implementation of a range of
behavioral variations due to individual profiles (e.g.,
cognitive, affective, personality, and morale factors)

Attention: anxiety level affects scan speed, selectivity,
ease of engagement/disengagement

Perception: skill & anxiety levels affect perceptual
processing and situation assessment

Memory: mood state affects retrieval; skill level & training
affect content & organization

Inferencing: affective state affects speed & decay of
activated units; skill level & cognitive style affect
preferences for particular inferencing types

Description of MAMID

The cognitive architecture of MAMID is developed and discussed in detail in their paper, but can
be summarized as a “modular cognitive architecture” which makes use of a variety of knowledge
representation formats, such as Bayesian belief nets and rules. The main components are the
attention, situation assessor, decision selector, and procedure executor and monitor modules.

Module behaviors are controlled by the contents
control parameters. To bias the module towards

of the knowledge base and the processing
a particular behavior, the related processing

control parameter would be altered. A list of possible parameters is given in table 4-1.

Table 4-1: Cognitive Architecture Parameters and Features Capable of
Modeling Effects of Individual Differences

Attention
Scan speed
Ease of engagement / disengagement
Scan intensity (degree of focus)
Selectivity

Memory
Content

Degree of conceptual complexity and differentiation

Type and size of memory units
Retrieval

Speed and accuracy of retrieval

Divergent vs. convergent search
Organization

Type of internal structure (e.g., hierarchy, causal model, etc.)
Level of interconnectivity among knowledge units

Perception

Specificity of correspondence required between input data and stored category

Speed of detection and matching processes
Inferencing
Generic
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Speed of inferencing
Decay of activated units
Specific
Meta-cognitive inferencing
What-if simulation
Causal analysis
Data-driven vs. goal-driven processing
Recall vs. derivation of required data
Movement between multiple levels of abstraction

They then provided a summary of cognitive, personality, and affective parameters, which
they found to be supported by the literature as likely to influence behavior. These are summarized
in Table 5-1.

Table 5-1: Examples of Individual Differences Factors Influencing Performance

Extraversion it
Emotional stability Cngmﬁwe -
Agreeableness Generic abilities
Openness Working Memory (WM)
Conscientiousness Capacity
“Giant 3" Speed
Approach behaviors Accuracy
Inhibition behaviors LO(’/QILGI:'” mfemo,}lll o matorial
Agaressiven alence of recalled materi
ggressiveness Speed
Accuracy
e Attention
o0 0 AlectiveState = 0 Speed
Anxiety Accuracy
Fear Capacity
Sadness (low mood) Vigilance
Boredom Specific abilities and skills
Alertness Wargaming
Happiness, Joy What-if reasoning
Anger Specific topics / skills
Surprise Stylistic factors
Disgust Cognitive bias susceptibility
Guilt Visual vs. linguistically-oriented
Shame Assimilating vs. accommodating
Analytic vs. intuitive
Goal directed vs. data-directed
Case-based vs. 1st principles reasoning
Individual history
Preferred / Avoided situations
Preferred / Avoided maneuvers
Preferred / Avoided target types
Previous successful / failed operations
Training / Education
Doctrinal emphasis on sp. maneuvers
Doctrinal emphasis on particuiar unit
Doctrinal preferences for timing
Specific area of decision-making
competencies and vulnerabilities
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At this point, they have provided both a set of model parameters and a list of individual difference
parameters. The problem now is to connect these individual difference parameters to the cognitive
architecture parameters, and to define the domain specific ways in which the cognitive architecture
parameters affect behavior in the simulator. A few examples of relationships (such as anxiety tolerance ->
bias towards threats) are presented, but for the most part detailed descriptions of these relationships are
not given.

Conclusion

A version of the MAMID was being developed within a computer simulation to demonstrate the
effectiveness of this model in the tank scenario discussed above. The current status of this work
is currently unknown. They summarized the goals of their paper as:

e To represent a particular individual’s behavior by capturing his/her cognitive and
decision-making style, and

e To make simulated training exercises more realistic by providing for a range of behavior
for both friendly and opposing forces.

Finally, they pointed out some of the limitations of this work such as problems assessing
individual differences and that it is not know to what degree individual differences change over
time or in different domains.

References

Hudlicka, E., & Billingsley, J. (1999). Representing behavior moderators in military human
performance models. In Proceedings of the 8" Conference on Computer Generated Forces and
Behavioral Representations.

7.1.2 Role of MAMID in an Adaptive Instructional System

Motivation

Currently, the student model used in the tutoring system does not take affective state (physical, emotional,
mental), learning style, cognitive style, or personality factors of the student into account during
instruction. Elements of MAMID could be very useful in augmenting a student model to take advantage
of this information. Three different types of actions could be performed based on knowledge of individual
differences: adaptation of instruction, providing guidance, and informing the student.

Use

The first type of action is adaptation of instruction. This would involve altering the teaching style or
content of the instructional system to take into account factors specific to the individual. Examples of this
for learning styles can be seen in the learning styles section of this report. An example of altering content
might be tending to retrieve less challenging scenarios for more anxious students; retrieving scnearios
where boldness is required for more timid students (thus practicing their weaknesses); or use of specific
remedial exercises to address the particular individual factors, if they are a detriment.
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A second type of action would involve guiding a student to the correct solution. The idea here is that if a
student is likely to make a mistake, it will enhance learning to proactively guide her in the right direction
rather than letting her make a mistake and providing a subsequent remediation. A relevant example given
by Hudlicka and Billingsley is that of having high anxiety in an ambiguous situation. In this context, the
student is likely to perceive ambiguous information as a threat and may react prematurely. Rather than
letting this happen for an anxious student, an AIS might proactively suggest that the student wait for more
information before acting, thus preventing the mistake.

Another use of information on individual differences would simply be to inform the student of their
strengths and weaknesses. For example, if a student knows that they usually behave too timidly, they
could mentally compensate for this deficiency when deciding what course of action to pursue.

Limitations

A primary limitation of using MAMID is the assessment of individual difference factors in each student.
Many of the factors described in the model would be difficult, if not impossible, to accurately assess for
every student that uses the AIS. Another related problem is the extent to which the individual differences
will transfer to the training domain, or across different training domains.

The model developed by Hudlicka and Billingsley was designed to provide realistic behaviors in a
software agent, not to predict behaviors of humans using simulation software. In the above example given
about anxiety and perception, it must be realized that a student would have a different belief system than a
software agent. While the agent “believes” that it might die (hence the anxiety), the student might be
more anxious about using the adaptive instruction system than the simulated threat. So the correct action
for the AIS in this situation might be to work slowly with the student to make her feel more comfortable
with the system. To alter the model to correct for the different belief systems will require significant work
on assessing the relationships between individual difference factors and model parameters for students
using a simulation, similar to the work done on these relationships for software agents.

Finally, the model as presented would require a large amount of background knowledge in order to
determine the likely interactions between individual differences, model parameters, and behavior. This
would likely involve developing an expert system for each domain.

Conclusion

Despite the limitations of the model discussed above, the MAMID methodology still looks to be quite
useful in constructing an AIS. It provides an outline of the tasks which need to be completed to
effectively use individual differences in the context of an adaptive instructional system.

7.2 Learning Styles
Introduction to Learning Styles

A motivation of adaptive instruction is the idea that all learners do not learn the same, and that an increase
in students’ performance could be realized by teaching to their individual differences (Federico, 2000).
One way of adapting instruction to an individual is through altering the instructional style to match the
student’s learning style. Federico purports that by understanding a student’s style, a teacher could:
“improve the planning, producing, and implementing of educational experiences, so they are more
appropriately compatible with students’ desires, in order to enhance their learning, retention, and
retrieval” (2000, p. 367).
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The simplest definition of a learning style (also called a cognitive style) is the learning strengths and
preferences of a student. However, many other definitions exist, such as the one given by the National
Association of Secondary School Principles. They define a learning style as “the composite of
characteristic cognitive, affective, and physiological factors that serve as relatively stable indicators of
how a learner perceives, interacts with, and responds to the learning environment” (Keefe & Monk,
1986, p 1). Despite the plethora of definitions for learning styles, the basic idea can be seen through a few
examples provided by Felder (1996). He discusses that some students might focus on facts while others
prefer theories or that some students learn better visually and others verbally. Similar to the large number
of definitions for learning styles, there is no one accepted model of, or assessment for, learning style
(Hickcox, 1995).

Curry (1987) tried to organize the learning style field, and defines four areas of learning styles in an
“onion” model: instructional preference, information processing factors, social interaction preference, and
personality factors. It is called an onion because the outside layers (instructional preference) change over
time, whereas the inner layers (personality factors) are stable over time. Of these four elements,
instructional preference, information processing characteristics, and personality factors are likely to apply
to the adaptive instructional system (AIS) as described in this report. Unfortunately, this does not simplify
the problem of deciding which learning style model (and accompanying inventory) would be best to use
in an AIS. Leslie, Perry, and Landrum (2000) provide a concise summary of learning style models that
fall under these three headings. Under instructional preference they list theories by Canfield and Dunn
and Dunn. Models by Gardner, Gregorc, and Kolb are classified as information processing models.
Finally, Meyers-Briggs and Witkin models are described as personality characteristics models. The
Felder-Silverman, Rider, O’Brien, and Keefe and Monk models are four additional examples not
discussed by Leslie, Perry, and Landrum.

Models

Instructional Preference Models

Dunn & Dunn’s (Dunn, 1984) model is based on five environmental and instructional preferences. The
first of these preferences is environmental, which covers sound, light, temperature, and class design.
Emotional preferences contain motivation, persistence, and structure. The sociological preference
addresses learning alone or in groups, as well as learning relationships. A physiological preference
element contains such things as perception, time, and mobility. The final element contains psychological
preferences, of which hemesphericity or analytic mode are good examples (O’Connor, 2000). The student
could be ranked in these dimensions by using the Productivity Environmental Preference Survey,
developed by Price, Dunn, and Dunn. (Murray-Harvey, 1994).

The Canfield model (1980) was based on four learner scales: conditions of learning, content, mode, and
expectation. Conditions of learning might include affiliations, structure, and orientation towards goals and
competition. Numbers and language would be classified as content. Mode captures a student preference
for listening, reading, iconic, or direct experience, while expectation is related to the expected grade. The
two inventories for this model are the Canfield Learning Style Inventory (CLSI) and the Canfield
Instructional Style Inventory (CISI). While the CLSI was created to assess learners, the goal of the CISI is
to help students and faculty communicate about learning activities (Swanson, 1995).

Information Processing Models

Gardner provides a theory of multiple intelligences. The seven different types of intelligence are
linguistic, logical/mathematical, spatial, musical, kinesthetic, and inter/intrapersonal. The focus of this
theory of multiple intelligences is on the content of the material to be learned and it’s relationship to
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various disciplines. A limitation given of this model, with relationship to learning styles, is that the
process of individualized learning is not addressed (Silver, Strong, & Perini, 1997).

Kolb’s model classifies students on two dimensions: concrete experience (CE) or abstract
conceptualization (AC) and active experimentation (AE) or reflective observation (RO). Using this
model, students are classified into one of four types based on how they perceive information (CE/AC) and
how they learn information (AE/RO). This theory takes into account that people could use any of the four
styles some of the time by claiming that the classification is a preferred method, not an exclusive one.
Kolb also developed a Learning Style Inventory (LSI) to categorize students according to this model
(Willcoxson & Prosser, 1996). A more recent version of the inventory is titled the LSI-IIa (Smith & Kolb,
1996).

Gregorc’s (1982) model is similar to Kolb’s, except that the two dimensions rate perception from abstract
to concrete and ordering from sequential to random. The final classification of the learner is into one of

four states, again similar to Kolb, using the Gregorc Style Delineator.

Personality Factors Model

Witkin’s model is a bipolar construct. The two ends of the spectrum are field dependence and field
independence, which relate to how much a learner is influenced by the surrounding field. People would
not fall into one of two categories, but would rather be placed somewhere in the continuum between the
two poles. Witkin developed the Group Embedded Figures Test to classify individuals on this construct.
Basically, the test required people to find a simple object in the context of complex objects. Those
classified as field independent would be able to perceive the figures, despite the complexity of the
surrounding field (Swanson, 1995). This type of test has been used to select people for positions that
require selection of objects from a complex field such as pilots and bus drivers.

The Myers-Briggs Type Indicator (MBTI) defines sixteen different personality types through the use of
four factors. The factors used by this model are extraversion (focus on people) / introversion (ideas),
sensors (detail oriented) / intuitors (imagination oriented), thinkers/feelers, and judgers/perceivers
(Felder, 1996). Felder also describes some examples of students’ classifications and their associated
learning blind spots. The MBTI usually consists of around 90 questions, takes 15-25 minutes to complete
(Consulting Psychologists Press, 2000), is paid for on a per-test basis, and requires a qualified person to
proctor and interpret the test. An online version of the test is currently priced at $99 per test
(Knowyourtype.com, 2000). The Keirsey Temperament Sorter is a test that is freely available online and
is correlated with, but not a substitute for, the MBTI (Kiersey, 2000). Despite the large number of MBTI
users, there are some reservations about its reliability and the fact that determining learning style is not
one of its recommended uses. Additionally, the MBTI is not necessarily valid across different domains
(Noe, 1999). For example, a study by Cooper and Miller (1991) found that students were primarily
sensors while professors taught in an intuitive style, but did not find that in-class teacher/student
congruity led to higher grades.

Other Models

The Felder-Silverman model seems to contain aspects of both instructional preference and information
processing. The five dimensions of this model are: sensing/intuitive, visual/verbal, inductive/deductive,
active/reflective, and sequential/global (Felder, 1996). The Index of Learning Styles inventory would
classify students in all of the categories except inductive/deductive. A free online version of the test is
available at:http://www2.ncsu.edu/unity/lockers/users/f/felder/public/IL Sdir/ilsweb.html. The test
contains 44 questions, which could be roughly estimated to take 10-15 minutes.
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Another model that classifies learners on two continious dimensions is the model by Riding (1997). The
first dimension is wholist/analytic, which describes if a person processes information in wholes or parts.
Verbaliser/Imager is the second dimension, which describes how a learner represents information
verbally or pictorially. Rider discusses various tests by others for measuring these traits, as well as the
Cognitive Styles Analysis (CSA), which he had developed previously. The CSA is a computer-based test
which scores students on these two dimensions.

O’Brien (1989) discusses a model of learning channels, which describes three modalities of learning:
auditory, visual, and haptic. He claims that learning channels affect both how students learn and how they
demonstrate what they have learned. He provides a Learning Channel Preference Checklist for use in
classifying an individual according to their preferred learning channel.

The last model discussed here is that presented by the NAASP (Keefe & Monk, 1986). They describe a
comprehensive Learning Style Profile, which determines students cognitive, affective, and physiological
styles. Examples of cognitive style might be analytical or spatial skills, persistence or grouping
preferences would be part of affective styles, and perceptual response and study time preference are
examples of physiological styles.

Which model to use?

In order for a learning style model to be useful in an AIS it must meet the following requirements:

1. The inventory to assess the learning style of the student should be quick, easy, and inexpensive to
perform as well as statistically valid.

2. The model should be generally supported in the research literature.

3. The model must contain dimensions that can be used to successfully adapt the course to improve
the learner’s performance.

The models discussed above by O’Brien, Canfield, Dunn and Dunn, Felder-Silverman, and Keefe &
Monk all contain a perceptual aspect, sometimes called a learning channel. Kirby, Moore, and Schoefield
(1988), not discussed above, is yet another example of research on this topic. Most learning channel
theories describe learners as visual, auditory, or kinesthetic and propose that students will learn best when
presented with information in their preferred modality. The learning channel model meets the easy and
inexpensive requirement. A learning style test is available on the Internet for a nominal charge. This test
contains 30 items and would probably take between five and ten minutes to complete. While statistics for
this test are currently unavailable, it does have the benefit of being actively used by several large
corporations and government branches (Center for New Discoveries in Learning, 2000). Additionally,
since the learning channel model is part of several of the competing learning style models, it seems to
meet the second requirement of general support. How this model meets the final requirement will be
discussed below.

The Kolb model is another model that could be used within an AIS. The LSI test is described by
(Newstead, 1992) as quick and easy, but he does question the tests validity. The LSI2 test for Kolb’s
model (described above) was created to address validity problems such as these. This model has much in
common with the Gregorc and Felder-Silverman models, lending to it being acceptable as generally
supported. The possible uses for this model in an adaptive instruction system will be discussed below as
well.

Finally, the personality model proposed by Myers-Briggs could also be used. Since the questionnaire

takes around 25 minutes, and seems to be expensive, it pushes the limits for quick, easy, and inexpensive.
Despite reliability questions, it is currently widely used, which meets the second requirement. Regarding
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the third requirement, it seems intuitive that the results of this personality measure can be used to
effectively instruct the student, though at this time we have not found research describing what are the
right connections to make between personality type and effective teaching strategies.

However, because of the diversity and number of learning models, there will inevitably be other models
that would be relevant or interesting. Therefore, an AIS should allow the content author to develop
additional learning style models. Furthermore, since learning styles can be domain dependent, the author
needs to be able to develop domain specific interactions between learning style and content. A good
example of the need for this adaptability is the concept of boldness. This concept is not part of any of the
examined models, but might be especially important for an AIS system providing military training. This
adaptability also creates the added benefit of allowing an AIS to be used as a tool for further research in
learning styles. s

Practical Use of Learning Style Models

McLoughlin (1999) discusses the idea of using a learning style model for adaptive courses. These steps
neatly match a single phase of an AIS:

1. Identify learner specifics

2. Select and organize content

3. Define the pedagogical profile of the adaptation

4. Develop the instructional unit-pedagogical profile, media, and materials

The first step is to assess the learning style of the user, as described above using a learning channel test. In
the second step, the knowledge of the users learning style would be used to select and organize content.

Learning Channel Model

The Armor Captains Career Course (2000) provides several suggestions for taking advantage of learning
channel knowledge in presentation of course material (Step 2). Some of the ideas that could be adopted by
an AIS are:

e For students that are visually oriented
o Provide notes in an outline form
o Provide a way for them to develop outlines when attempting to answer complex
questions
o Make use of extensive visual association and imagery
o Visually cluster ideas for the student
o Provide a method for the student to perform written repetition. An example of this might
be to provide a notepad for them to type in information they want to keep at the end of a
session.
e For students that are auditory oriented
o Encourage the student to rehearse information orally or to use subvocalization
o Eliminate extemporaneous noise (mouse clicking noises, etc.)
o Provide audio in place of text. For example, add audio sound bytes to diagrams rather
than text
¢ For students that are kinesthetic oriented
o Keep auditory information to a minimum
o Encourage active participation through hands on activities. An example of this would be
an interactive training “game” to teach complex ideas
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o Present information organized into steps necessary to complete the task
o Provide summaries for the student for complex text

Kolb’s Model

Several ideas for using Kolb’s model discussed by Felder (1996) could also be implemented in an AIS.
The basic tactic is to alter the teaching style to suit the student. Here are the four styles and their
associated teaching style:

Concrete/Reflective — This type of learner needs to be motivated.
Abstract/Reflective ~ This type of learner needs an expert.
Abstract/Active — This type of learner wants a coach.

Concrete/Active — This type of learner wants to think for herself (advisor).

PR

So, to take advantage of Kolb’s model the AIS must be able to act in all of these four modes. A motivator
would explain the relevance of the material and relate it to the student’s experience. An expert would
focus on explaining the information in an organized fashion and allow time for reflection. The coach
model would promote learning by trial and error by providing guided practice and feedback. The final
mode, which will be referred to as the advisor, would provide new and complex real world problems and
generally allow students to have the chance to discover things for themselves.

Myers-Briggs Model

The MBTI would provide a ranking of an individual on one of the four preference scales discussed above.
Intuitively, this model seems like it could be useful in adaptive instruction. For example, imagine a
student rated highly on the judger scale and another rated high on the perceiver scale. In a tactical
situation, a judger might seek to make a judgment with incomplete data. A training system that knew this
in advance could give a hint to the user that they should wait a little while for more data. Contrariwise, the
second student might be urged to make a decision if it appears they are waiting too long for additional
information.

However, to make effective heuristics of this nature will probably require the assistance of domain
experts and cognitive psychologists. Another interesting problem is that the training content, in addition
to teaching style, might need to be altered to take personality factors into account. An example of this
would be performing a complex exercise. If a student has a low anxiety threshold it might be useful to
have them perform easier problems first to build their confidence before tackling the actual problem, i.e.
add additional content based on personality. Finally, it might be the case that other personality indices not
normally associated with the learning style literature might be more useful in an AIS. This is yet another
reason for including the flexibility to add author defined constructs into the AIS.

Conclusion

This report begins with a discussion of the idea of a learning style, and the assumption that an adaptive
instructional system can teach to these styles to improve performance. An accepted way of classifying
various competing models is presented, along with summaries of several of these models. Finally, the
requirements of a model for use in an AIS, as well as some models that meet these requirements, are
presented. This report serves as a starting point for implementing the ability to teach to an individual's
learning style in an AIS. This paper also demonstrates the need to implement the AIS in such a way as to
allow the instructor to add new learning style models in the authoring tool and to allow for domain
specific style/personality interactions with training content.
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7.3 C41 ITS Use of AIS

7.3.1 Current C4I ITS Work: FBCB2/Tactical Decision-Making Intelligent Tutoring System for
Company Commanders

Project Overview

SHALI is researching for STRICOM, an Intelligent Tutoring System (ITS) for tank and mechanized
infantry company commanders and has developed a limited prototype. The ITS teaches tactical decision-
making and the proper tactical use of FBCB2, a C4I System, by presenting course material and examples,
then testing the commander in tactical situations displayed as FBCB2 overlays or in a commercial tank
game simulator interfaced to the actual FBCB2 software and the ITS. The ITS monitors student actions
in the simulated scenario, assesses their correctness in the current situation, and debriefs the student by
automatically assembling an After Action Review (AAR). It then infers the knowledge deficiencies of
the student, and formulates a remedial instruction plan, which normally includes further course material,
examples, and further exercises to practice and test the student's weaknesses. The eventual intent is to
embed the ITS with the FBCB2 software on the various weapon platforms including the M1 Abrams and
M2/3 Bradley.

Army C41 System tactical operations and decision-making are complex cognitive tasks that normally
require the availability of an instructor. This prevents the effective use of embedded systems for training
out in the field, where an instructor is not typically present. Our ITS will assume the duties normally
performed by the instructor. In this ten-month effort we have investigated the interfacing requirements,
and determined the student and instructor user requirements. We have knowledge engineered instructor
and FBCB2 experts, designed the ITS, implemented a limited ITS prototype, and interfaced the ITS
prototype to FBCB2 and the commercial simulation game.

Executive Summary

Ultimate Project Goals:

Improve C4I Readiness

Provide C4I Instruction to support Embedded training, anytime, anywhere

Provide more practice to trainees, with feedback and remediation

Improve Tactical Decision-making by providing more tactical decision-making practice
Investigate the feasibility of an ITS to support C41 Training

Implement a limited prototype, interfaced to a C4I system, to prove feasibility

Findings:
¢ FBCB2 Training decays quickly

o A very complex system designed for a diverse set of users

o Most user types will use only a small fraction of the FBCB2 Functionality
»  Armor Company Captain will create FragOs and overlays before combat using

2/3 dozen of the several thousands of available symbols

* Captain will monitor friendly and enemy positions during combat
=  (Captain will issue STTREP after combat
= Captain will not usually send any messages during combat

o Anembedded, scenario-based training aid would increase combat readiness substantially
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¢ Company Commanders would benefit from more tactical decision-making practice
o 2-D Map, Tactical Decision Games (TDGs)
o 2-D Map Dynamic Simulations
o 3-D Virtual Terrain, Dynamic Tactical Simulations

¢ Easy to use scenario authoring tools are needed, to enter many scenarios

Limited ITS Prototype built in SHAI’s Internet ITS Authoring Tool (ITTSAT):
e 3 Parts —- FBCB2 Use, 2-D Tactical Decision-Making, 3-D Dynamic Scenarios
System automatically picks the best scenario for exercises for the particular student
System automatically debriefs student performance - correct/incorrect/omitted actions and
decisions, and the associated underlying principles needed for correct decision-making
e Maintains Model of what the student knows and can APPLY in operational, tactical situations
¢ Different Instructional Methods for Different Students

Demonstration Sequence:

¢ First Student, no experience (One Instructional Method (IM), No skipping)
o Sees detailed FBCB2 CourseWare and Symbol Placement Scenarios
o Sees Detailed Tactical CourseWare before getting related exercises
o Mistakes in Tactical Decision Games (TDG) with feedback

e Second Student, has good experience (Different IM/skipping/progressing/modeling)
o Skips FBCB2 Tutoring/Scenarios
o Gets TDGs Right and Progresses Out of the TDGs / General Tactical Principles
o Gets Spearhead Scenarios Wrong, Gets Automatic Debriefs, and sent back for

remediation on specific principles (e.g., Fix and Flank, Bounding Overwatch)

ITS Prototype Description

When a new student logs on he is first asked some questions about his background, experience, and last
FBCB2 training/use. These questions include level of education achieved, rank, highest unit commanded,
types of units served in, computer familiarity/comfort, FBCB?2 familiarity/comfort, and general
perceptions as to its usefulness. The ITS uses this information to make initial estimates as to the student’s
mastery of various principles, including both tactical knowledge and the use of FBCB2. It will also be
used to select scenarios, other exercises, types of hints, and other forms of instruction. Mastery categories
are Beginner, Novice, Intermediate, and Expert. The Beginner category for a principle occurs when a
student performs successfully with it less than 20% of the time. (Novice - 20 to 50%, Intermediate — 50
to75%, Expert > 75%.) Students at the expert or intermediate level for a principle are never given hints.

If the ITS estimates that the student’s mastery of FBCB2 principles is low, then before doing simulated
exercises, the student will first be put through FBCB2-only refresher exercises. An introductory lesson
will explain with detailed steps how to create an overlay and find and place the most relevant symbols.

After the FBCB2 refresher exercises (if they were needed), the ITS will begin tutoring the student on
general tactical principles. If it estimates his mastery is relatively high it will proceed immediately to
tactical decision games presented and answered as FBCB2 overlays. If not, it will first present General
Tactical Principle Courseware. For each Tactical Decision Game (TDG), the ITS will analyze the
student’s plan (given as an FBCB2 overlay) and automatically create a debriefing describing what parts of
his plan are right, what parts are wrong, and giving an expert’s rationale for the best options. For poor
decisions, the ITS will lower its estimate of the mastery of principles related to those decisions, and
provide remedial materials on those principles, before presenting anymore TDGs. The student’s overlay
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is evaluated to comparing to overlays input by an instructor for that particular TDG. These typically
represent a few possible right answers and a few common mistakes. The instructor will also have
annotated the overlays with information for use by the ITS in assembling the debrief and determining
which principles the student is weak in.

For the TDGs and the 3-D scenarios, the ITS will initially select exercises based on the need to test
untested principles, following each by a debriefing and detailed information on the principles missed.
The ITS will then begin to also retrieve scenarios that exercise the principles in which the student’s
mastery is weakest. Furthermore, for any scenario using principles that the ITS believes the student is
weak in, it will provide him hints for the scenario, if they are available. These are generally questions
designed to get him to think about the most important tactical principles required in the scenario.

After the student has demonstrated (or learned) his mastery of general tactical principles in the TDGs, he
proceeds to that portion of the course that requires him to show that he can apply these same principles in
a 3-D virtual reality dynamic tactical simulation. Additionally, more operations-oriented principles (such
as knowing when and how to use a company wedge formation) will also be tested. In the prototype, the
student is given a short situation description and then proceeds to execute the mission in Spearhead II.
After the scenario ends, the event log is analyzed by the ITS to automatically determine which actions
were correct, incorrect, or omitted, and the underlying principles that were understood and applied or not.

In some scenarios, we will have subordinates that do not follow orders, plans, and proper tactics.
Normally the commander would correct these problems with voice commands. For this demonstration
we will do no Speech Understanding. But these corrections should be manifested by the motions and
actions of the commanders’ company’s tanks. The ITS will assess these motions and actions (captured
from VMF messages). For example, the commander’s OPORD may have had the lead platoon in a
wedge formation but it is proceeding in a column. If he orders them into the correct formation, an
evaluation machine will detect the correction and he will get credit for recognizing the wrong formation,
and recognizing the need to correct it. If they continue to move as a column, he will fail these principles.

Some scenarios will in particular test his use of FBCB2 to maintain situational awareness. For example,
we can have enemy approaching from an unexpected direction, which is trivial if the commander is
watching the FBCB2 map display. Another test is to have friendlies show up suddenly at an expected
enemy location. A test for the combat principle of audacity is to have the commander unexpectedly come
across a much larger force in a totally unprepared situation, such as refueling, without security.

In the scenario, unplanned actions will occur, such as unexpected contact with the enemy. His tanks will
begin to react and he will also issue particular orders, verbally in the real world, with mouse clicks in the
simulation. Again, the correctness of his decisions can be evaluated from the movements and actions of
his company’s tanks. For example, one scenario involves the lead platoon spotting a roadblock at a choke
point. That platoon should deploy in a support by fire position and the commander should order his
infantry to protect each flank. He should then order dismounted assaults up each flank and around the
roadblock to secure the far side. He should Call For Fire at appropriate locations and times during the
scenario as well. Evaluation machines check each of these actions and debrief him at the end as well as
infer the state of his tactical knowledge.

The student is also evaluated based on the motions and actions of his individual tank. These correspond
in many ways to how individual tank commanders would be evaluated, but also include additional factors,
such as not overly endangering the company commander, that the commander should be with the main
effort, and that when traveling with a platoon in the wedge formation, the commander’s tank should be at
it’s center.
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After the scenario, the commander is debriefed with an After Action Review. All the things he did right
and wrong are reviewed and he is told about the relevant principles. For the failed principles he is given
detailed information and one example for each. The mastery level estimates for all principles involved
are updated. Based on these, a new scenario is retrieved. Scenarios are selected that test untested
principles and test recently failed principles.

The prototype has different instructional methods for students with little mastery or experience compared
to students with a lot of mastery and experience.

7.3.2 Additional Adaptive Capabilities Needed in the C4I-ITS

Personality and other Individual Difference Issues

FBCB?2 is a advanced, highly complex software system being introduced into vehicles manned by
personnel that heretofore had no need for the skills required to successfully utilize complex software
systems. Thus, many of the Soldiers who will need to be trained on FBCB2 have little or no experience
with any software, much less software of such complexity. In addition to experience differences, there
are deeper personality issues. Some Soldiers, while bravely facing enemy fire, are actually scared of the
prospect of using software. Others have a mistrust of software. And still others doubt the wisdom or
usefulness of such software in their combat vehicles. A more general trait that varies among Soldiers is
how quickly they can learn new concepts and ideas, especially those that are very different from any they
have learned before. A related problem, for those with E-mail and other electronic system experience is
learning in what ways FBCB2 behaves differently than non-tactical systems they have used that appear
very similar. Given the enormous size, complexity, and number of features in FBCB2, some Soldiers will
have more of an ability to concentrate on just a very small fraction of capabilities that they need, while
filtering out the enormous clutter presented by the sheer number of features that they should ignore for
their own particular job.

Proper tactical decision-making is greatly affected by the personality of the decision-maker in a large
numbers of ways. In fact, some of the general tactical principles are themselves personality traits. The
best example is boldness. That is, a good tactical plan should often be bold. This requires a certain
boldness in the person creating the plan. Similarly, a good tactical decision-maker can make decisions,
on his own initiative. Many tactical decisions have to made fast, so the speed with which the Soldier can
process information and consider tactical principles is important. It is much more important to follow the
commander’s intent than his specific orders, since a changing situation can make the original orders
obsolete. This will be easier for different personality types than others. Similarly as described in earlier
sections, some students tend to concentrate on details while others like to see the bigger picture. But
understanding the bigger picture is an important tactical principle. Similarly, different types of students
will find it more difficult to understand the enemy, his intent, and the fact that he is a thinking, acting
entity with his own motivations and goals and he will not only react to our actions but will try to seize the
initiative himself.

Learning Style Issues
The C41 ITS is implemented with the Internet ITS Authoring Tool (IITSAT). This is fortunate since
IITSAT allows the representation and use of alternate instructional methods. For example, one

instructional method is to first present an overview, followed by examples, followed by more detailed
information and then exercises. Another method is to jump immediately to exercises. Thus, if different
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learning styles are identified in the students in the C4I domain, these can readily be taken advantage of,
given that the AIS capabilities will be incorporated into IITSAT.

Some learning style differences (and therefore different instructional methods) are already apparent.
Students who are anxious about using software and FBCB2 will have to be presented the material at a
much slower pace to keep them from having severe emotional reactions. Students familiar with software
in general can be taught by having the system point out the similarities and differences between FBCB2
and common software packages.

7.3.3 Phase II Work

As mentioned above, AIS capabilities will be incorporated into IITSAT during Phase II. This will allow
C4I to readily take advantage of the AIS capabilities. The current plan for C41 ITS is to increase the
capabilities of the prototype and begin Soldier trials. This work will occur in parallel with the AIS Phase
II which will facilitate synergy between the two projects.

Learning Styles

The AIS version of the C4I ITS will identify the student's predominant learning style and select
instruction accordingly. Currently, many of the general tactical principles have multiple descriptions.
These can be in different media (text, speech, graphical, and animations) and of different themes (quotes
from historic figures, descriptions highly correlated to scenarios (exercises or examples), general first
principle discussions, historic scenarios, small examples, etc.). Currently, which description is presented
to which student is fairly arbitrary. AIS capabilities will allow the C4I ITS to at least select the first mode
and content based on the student's preferred learning style. For example, if the student is classified as
preferring a reading mode, the system would tend to present a text description of a principle. Similarly, if
the student's cognitive style is case-based, the historic example-based description of the principle might
be retrieved. If the student tends to reason from first principles, a description of the principle in terms of
first principles can be given. For example, a description of the fix and flank principle can either refer to
historic cases where that tactical principle was aptly demonstrated, or, could describe it more in terms of
the fixing force maintaining the attention and direction of the enemy's weapon systems, while the flanking
maneuver allows an attack from an unexpected direction (surprise) and from a direction toward which the
enemy's weapon systems are not directed.

Students who have been classified as active experimentation learners would have the tactical exercises
emphasized to them. Those classified as reflective observation learners would have a greater emphasis on

descriptions and examples, though exercises would still be used to test the student's mastery.

Personality and other Individual Difference Issues

In the case of learning FBCB2, the most important personality and other student differences (besides the
mastery differences already tracked) are fear of software, current anxiety level, mistrust of software, bias
against use of software in a combat vehicle, and openness to new concepts. For FBCB2, informing the
student of his personality factors (he will already know them) will not be useful and predicting his
specific actions based on personality factors to more proactively guide him is not practical. This leaves
adapting the instruction and content to the student's personality factors. As mentioned above, students
with a fear of software or a high current anxiety level, must be presented information at a slow pace, and
given lots of small simple examples to cement the material. Their mastery of the individual concepts and
techniques must be estimated high with a high degree of certainty before proceeding to more complex
exercises requiring combinations of principles. Those with a mistrust of software, a bias against FBCB2,
or a lack of openness need early exercises where the benefits are clearly demonstrated. An ambush and/or
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fratricide-oriented scenario exercise illustrates the combat benefits of FBCB2 in very concrete terms.
Similarly, example operational scenarios with and without FBCB2 overlay capabilities available
demonstrate the usefulness of FBCB2 before combat.

As mentioned earlier, proper tactical decision-making is greatly affected by the personality of the
decision-maker. In addition to being able to use personality factors to adapt instruction, it is also practical
and useful to inform the student about them and to predict types of actions in order to provide hints to
proactively prevent the student from making mistakes based on those personality factors. Consider
boldness for example. If we find this trait lacking in a student, we can have specific remedial instruction,
illustrating the historic importance of boldness in military planning. Furthermore, we can tend to retrieve
exercises for the student where boldness is an important factor, thus practicing his weakness. But given a
specific tactical scenario where there are two courses of action as the bolder one is more correct, using
MAMID or similar techniques, the ITS can predict that the student will likely choose the less bold,
suboptimal option. Before the decision is made, just encouraging him to "Be Bold" would be extremely
helpful to him. Finally, keeping the student informed of his tendency to not be bold enough would help
him to intellectually compensate during tactical planning. Similarly techniques can be applied to the
other personality factors with tactical decision-making ramifications.

8. Methodologies

8.1  Intelligent Tutoring Systems

ITSs contrast with most Computer Based Training (CBT) systems in that the latter can usually be
described as automated text books. That is, most CBTs are developed by using the same approach as a
corresponding textbook. In some domains, multimedia material that textbooks cannot include, such as
video, audio, and animation, are added, but these don’t really reflect differences in instructional methods.
Other than allowing self-navigation, typical CBTs do not attempt to adapt or tailor the instruction to the
individual. Additionally, most CBTs do not embody any particular instructional approach, theory, or
philosophy, other than the instructional approach which happened to exist in the textbook on which the
CBT system is based.

ITSs, on the other hand, emphasize custom instruction tailored to the particular individual and are
typically based on pedagogical concepts. To truly tailor instruction requires that the instruction system
create, develop, and maintain a model of the student, which ITSs do and most CBTs typically do not.
This model is used as a basis for instruction method and content selection, diagnosis, remedial course
formulation, re-testing, and progress monitoring and reporting, all done automatically.

8.2  Decision-Centered Design and Cognitive Task Analysis

Too often, decision support and intelligent systems and aids are not designed around the actual decision
requirements of the task. As a result, the systems often fail to provide the necessary information, fail to
provide it in a useful form, or, as is often the case, make it more difficult to access essential information.
In the field of human factors (Woods, Johanessen, Cook, & Sarter, 1994), this is known as clumsy
automation, because the good intentions of the designers result in worse performance, rather than
improved performance.

The worlds of intelligent tutoring and aiding offer perfect opportunities to attempt to address some of
these design issues and problems. A key aspect of accomplishing this involves applying the recently
developed methodology of Decision-Centered Design (Klein, Kaempf, Wolf, Thordsen, & Miller, 1997).
This approach begins with a Cognitive Task Analysis (CTA) to identify the decision requirements of the
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task: the key judgments and decisions, the reasons why they are difficult, the types of errors that are
found, and the patterns and strategies used by experienced personnel. What is striking about this approach
is that it does not begin with decompositions of a task into basic elements, or determinations of
information flow. Instead, it fits within user-centered design approaches (e.g., Landauer, 1995) by
focusing on the decision requirements for performing the task well, and uses these to design the
architecture of the system. Klein Associates has successfully applied this method in previous design
projects (Klinger & Gomes, 1993; Miller & Lim, 1993) with high degrees of success. Klinger, Andriole,
Militello, Adelman, Klein, and Gomes (1993) report a careful evaluation that determined that
performance of AWACS Weapons Directors was significantly improved by an interface designed
according to decision requirements. Miller and Lim (1993) designed a decision support system for Air
Force weaponeers, and its value was so obvious that the sponsors moved directly into system
development. More recently, DCD has been successfully applied in proposing redesigns for the platform
displays for Naval landing signal officers (LSOs) (Stottler & Thordsen, 1997, Thordsen, 1998),
developing distributed team training models and training development tools for naval air missions
(Thordsen et al., 1998) and is currently being applied in projects examining the overall team
coordination/performance aspects of the AWACS and naval distributed team training. Accordingly, we
expect that the opportunity to use a Decision-Centered Design (DCD) approach in the current effort will
result in a foundation of the intelligent tutoring system that will have direct appeal and value for
individuals involved both in the giving and receiving of instruction.

8.3  Case-Based Reasoning

SHALI plans to employ case-based reasoning as a key reasoning method used by the AIS, to assess student
performance and other attributes, and make instructional decisions such as selecting and configuring
practice and diagnostic lessons.

Case-Based Reasoning (CBR) is a field of Artificial Intelligence which deals with the method of solving a
current problem by retrieving the solution to a previous similar problem and altering that solution to meet
the current needs. Case-Based Reasoning is a knowledge representation and control methodology based
upon previous experiences and patterns of previous experiences. These previous experiences, or "cases”
of domain-specific knowledge and action, are used in comparison with new situations or problems. These
past methods of solution provide expertise for use in new situations or problems. From our previous ITS
experience, we believe that the general problem of teaching students is well suited for the application of a
Case-Based Reasoning method.

CBR systems offer enormous benefits compared to standard Al approaches. The knowledge elicitation
bottleneck is largely circumvented. Cases can be automatically acquired directly from domain experts.
Rules, on the other hand, almost always require the intervention of a knowledge engineer. Instead of
having to elicit all of the knowledge required to derive a solution from scratch, only the knowledge
required to represent a solution is needed. So knowledge elicitation is largely avoided with CBR and may
be completely automated depending on the type of application and the expert. This makes CBR especially
appealing for an instructional design framework that will potentially be applied to multiple domains
because it reduces the knowledge engineering time requirement.

Conventional knowledge base technology dictates a single, fixed problem-solving methodology. With
CBR, each case (in the extreme), can represent a different methodology. This is important for complex
domains where different problems or situations, although sharing the same fundamental concepts, may
require different solution strategies.
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We plan to use case-based reasoning to select and modify instructional plans. For example, a case could
represent a lesson, task, or scenario that achieves certain instructional goals. The Instructional Planner
will select the case and modify it to achieve additional instructional goals.

9. Related Work

9.1 Relevant SHAI Projects
9.1.1 AEGIS Tactical Action Officer ITS

SHALI has developed for the U.S. Navy a simulation-based adaptive tutoring System (also known as an
intelligent tutoring System (ITS)) which enables students to act as TAOs in tactical simulations. The
simulation’s graphical user interface displays a geographical map of the region and provides rapid access
to sensor, weapon, and communication functions. After the student completes a scenario, the ITS
evaluates the entire sequence of student actions to infer tactical principles that the student correctly
applied or failed to apply. These principles are detected according to sophisticated pattern-matching
algorithms defined by the instructor using the System’s graphical user interface. The System is highly
configurable within the domain of naval tactical simulations, and authoring tools enable the instructor to
define new types of ships and aircraft, scenarios, and principles. The instructor can also define complex
behaviors for each friendly and enemy ship and aircraft to create realistic, multi-agent simulations. The
TAO ITS has proven an effective training tool. It is currently being used by tactical action officer students
at the Surface Warfare Officers School. Initial independent evaluation of the software in use has been
highly favorable. Simulation-based intelligent training systems complement traditional classroom or
computer-based training by enabling students to practice the application of concepts and principles.
Additional funding has been received to adapt the TAO ITS for fleet use on board ships. Contact: Joe
Russell (703) 602-5959 x183.

9.1.2 C4IITS

Under contract to STRICOM, SHAI is currently developing C41 ITS, a prototype intelligent tutoring
system for armored and mechanized infantry company commanders. C41 ITS will teach tactical decision-
making, command and control principles, and the use of the Force XXI Battle Command Brigade and
Below (FBCB2) command and control system. Before each mission, students will issue pre-mission
orders and graphical overlays that specify movements. The tutoring system will assess these plans using
symbolic pattern recognition techniques that compare each student's plan with annotated good and bad
plans (or portions of plans) supplied by experts. Similarities between the student's plan and the good
plans will identify specific proficiencies in high-level and low-level skills. Similarities between the
student's plan and bad plans will identify skill deficiencies.

During the mission, the students will interact with FBCB2 and Spearhead, a military game simulation
program that is being adapted for use in military training and is being integrated with FBCB2. Spearhead
implements the simulation behaviors and presents a 3 dimensional "out the window" view of the world as
seen from each vehicle. Spearhead will exchange real-time simulation data with FBCB2, and C4I ITS
will intercept those packets. The tutoring system will construct scenarios and modify scenarios in
progress to include situations that test various situation assessment skills. For example, the tutoring
system could place friendly forces in certain locations that the student might otherwise fire upon. If the
student does fire upon those positions, the tutoring system can infer that the student failed to use FBCB2
to notice the presence of friendly forces in that area. As another example, the tutoring system could place
enemy forces at a location such that the student should direct friend forces to oppose them. Failure to
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perform this action indicates either a lack of situation awareness of the enemy forces, or a poor tactical
decision. Contact: Rodney Long at STRICOM: (407) 384-3928.

9.1.3 Internet Intelligent Tutoring System

SHALI is constructing for the U.S. Air Force an Intelligent Tutoring System (ITS) server that connects, and
promotes communications between, a loose confederation of ITSs maintained by individuals with little or
no knowledge of each other's existence over the Internet. A user interacts with one ITS. When it
determines that the student lacks knowledge in a related field which is handled by another ITS, it sends
him or her there.

A key goal of this project is the development of the Internet Intelligent Tutoring System Authoring Tool
(IITSAT) that enables instructors to specify hierarchically-organized learning objectives and curriculum
elements, as well as instructional strategy decisions such as criteria for skill mastery and algorithms for
selecting next lessons and review materials. ITSAT is designed to reduce the cost and difficulty of
developing effective ITSs, by streamlining the process of specifying these instructional strategies. The
Phase II project started in April, 1998 and the contact is Teri Jackson at 210-536-3908.

9.14 Intelligent Tutoring System for Adult Literacy Enhancement

25% of the Navy’s enlisted population scores below the eighth grade level in literacy skills. There is a
need, therefore, to improve the reading ability of adults up to the twelfth grade level. SHAI is developing
an Intelligent Tutoring System to improve the literacy skills of adults. The ITS can model a student’s
reading abilities and provide customized instruction. The ITS also includes an authoring tool that allows
non-programmers to expand the set of reading material available to the tutor. The ITS and the authoring
tool resulting from Phase II will be of benefit not only to the Navy, but also to other branches of the
military and the government as well as to the adult community in general. The ITS can be used at adult
education centers, job corps training centers, and by other commercial organizations desiring to improve
literacy among their employees. This Phase II project shows our ability to develop ITSs for use by under-
performing students. Contact: Dr. Susan Chipman at (703) 696-4318.

9.1.5 Dismounted Infantry Military Operations in Urban Terrain (MOUT) Intelligent Tutoring
System

SHALI developed, in cooperation with Research Development Corporation, a Simulation-based ITS (SITS)
for training dismounted infantry, both as individuals and teams, that would be used with a virtual reality
simulator. Included in the project was the development of a generic ATS architecture that can interface
with existing and future simulators. The SITS diagnoses student learning needs, determines what
instruction content and technology are most appropriate, and drives the presentation of that instruction.
Key technologies are case-based reasoning (CBR), integrated knowledge structures for representing
expert and student knowledge, automatic knowledge elicitation, and dynamic scenario selection and
creation. The architecture supports automatic and semi-automatic knowledge engineering to update its
knowledge base as the domain itself evolves. The System trains squad and fire team leaders in Military
Operations in Urban Terrain. The ATS monitors the student's actions in the virtual reality environment,
assesses his deficiencies, and modifies the scenario or creates new ones to address those deficiencies. A
CBR system also selects the most appropriate instructional technique based on the student's individual
requirements and past learning behavior.
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9.1.6 Task Tutor Toolkit and Remote Payload Operations Tutor for Procedural Training

To lower the cost and difficulty of creating scenario-based intelligent tutoring systems for procedural task
training, Stottler Henke Associates, Inc. (SHAI) worked closely with the Og)erations Training Group at
NASA's Marshall Space Flight Center to develop the Task Tutor Toolkit (T"), a generic tutoring system
shell and scenario authoring tool. The Task Tutor Toolkit employs a case-based reasoning approach
where the instructor creates a procedure template that specifies the range of student actions that are
"correct" within each scenario. The system enables a non-programmer to specify task knowledge quickly
and easily via graphical user interface, using a "demonstrate, generalize, and annotate" paradigm that
recognizes the range of possible valid actions and infers general principles that are understood (or
misunderstood) by the student. when those actions are carried out. The annotated procedure template also
enables the Task Tutor Toolkit to provide hints requested by the student during scenarios, such as “What
do I do now?” and “Why do I do that?” At the end of each scenario, RPOT displays the principles
correctly or incorrectly demonstrated by the student, along with explanations and background
information. The Task Tutor Toolkit was designed to be modular and general so that it can be interfaced
with a wide range of training simulators and support a variety of training domains.

SHAI and NASA used the Task Tutor Toolkit to create the Remote Payload Operations Tutor (RPOT), a
tutoring system application which lets scientists who are new to space mission operations learn to monitor
and control their experiments aboard the International Space Station according to NASA payload
regulations, guidelines, and procedures. NASA is currently evaluating the effectiveness of RPOT and the
Task Tutor Toolkit and is exploring other potential training applications for the Task Tutor Toolkit.
Contact: Mr. Stephen Noneman, (256) 544-2048. Phase II Completed: February, 2000.

9.1.7 Operator Assessment and Operator Machine Interface Enhancement (OA/OMIE)

SHAI is developing for the Navy an intelligent, Operator Assessment and Operator Machine Interface
Enhancement (OA/OMIE) system for the LAMPS SH-60R Multi Mission Helicopter. During training
simulations, the system tests operator knowledge through the use of tactical scenarios and derives the
operator’s mental model based on his performance and explanations for his actions. The system then
adapts the operator's interface, based on deficiencies revealed in the mental model. This adaptation
involves the coordination of a collection of decision aids that draw upon a variety of disparate sensor data,
as well as mission intelligence and tactical knowledge, to enhance sensor employment, enemy platform
classification, situational awareness, and overall probability of satisfying mission objectives. The user-
modeling and intelligent interface technology developed in this project is highly applicable to supporting
adaptive embedded help. Client: Naval Air Systems Command HQ. Contact: Lt. Commander Henry
Jackson, 301.757.8159. Phase I Completed: December, 1997. Phase II ongoing.

9.1.8 Constructivist Distance Learning System for Counter-Terrorist Intelligent Analysis

SHALI is developing for the U.S. Army at Ft. Huachuca a training system comprised of two parts. The first
is a general framework that supports the creation of Constructivist DL courseware in a wide variety of
areas. The second product is a specific tutoring and scenario authoring system. The Intelligence in
Combating Terrorism (ICT) courseware was built using this general course creation framework. This
tutoring system gives the students extensive, hands-on training in the analysis of raw intelligence
information related to investigating terrorist organizations and installation threat assessments.

The purpose of the ICT tutor is to train the student in the analysis of raw intelligence leading to a compact
summary of a terrorist operation and an assessment of the current level of threat. The tutor uses

41



Constructivist learning theory by supporting adaptive learning, modeling, intentional activity, and rich
scenario contexts. The tutor immediately places the learner in a 'real-world' environment that allows the
students to learn in context and apply what they have learned. It is this contextual experience of
knowledge acquisition in an authentic environment that facilitates the learner to create his own constructs
that can be applied to new, unfamiliar situations.

The Tutor presents the student with a problem, provides the student with the tools to solve the problem,
and offers customized suggestions as a resource to solve the problem. The student produces a solution,
receives consequences based on their solution, and is guided to suggested areas for review before
beginning another scenario. Contact: Helen Remily at (520) 533-9077.

9.1.9 Intelligent Tutoring System for Long-Range Acoustic Detection of Submarines

SHALI is developing for the U.S. Navy an Acoustic Analysis Intelligent Tutoring System (AAITS) which
will enable students to practice the detection and classification of sources of underwater acoustic signals
such as submarines and whales. Acoustic analysis experts will create scenarios using a Scenario
Authoring Tool by selecting and viewing LOFARGRAMSs which are frequency-analyzed acoustic
datasets displayed as 2D images, annotating them with significant features and links among related
features, providing reasons for requesting each LOFARGRAM, and assigning a final classification.
Students will use the Tutoring System to carry out this same acoustic analysis. By comparing the details
of each student's analysis with those of the expert, the Tutoring System can identify the acoustic analysis
principles understood and correctly applied by each student, provide specific and individualized feedback,
suggest relevant training materials, and select appropriate next scenarios. By storing LOFARGRAMs
annotated by experts, AAITS also serves as a knowledge repository which disseminates the most current
acoustic analysis expertise to sonar technicians on land or at sea. A key innovation of AAITS is the use
of an application-specific Scenario Authoring Tool which enables experts to create scenarios which
encode their expertise and analyses intuitively, by annotating datasets. Phase II project start date: Feb,
1999. Contact: Master Chief Joseph Spivey at SPAWAR, (858) 537-0312.

9.2  Related Work by Others

Psychology research in the effect of individual differences on skill acquisition dates from the turn of the
century. However, much of this research focused on predicting the student's skill acquisition rather than
on determining how to adapt instruction, based on individual student attributes, to maximize learning for
each student. Although research into the utility of adapting computer-based training to individuals is
nearly as old as the field of computer-based training, much of this research has focused on interactions
between general aptitude level and learning environment, rather than on the full range of other student
attributes. For example, Campbell (1964) found that high aptitude students fared better using "self-
direction” learning environments whereas low aptitude students fared better using less flexible
"programmed instruction" environments. This aptitude-treatment interaction (ATI) was confirmed by
Shute and Glasser (1990) in a study where 800 students used Smithtown, a discovery learning
environment for learning microeconomics principles. Results from this study showed that some subjects
learned very effectively and rapidly in this exploratory environment (in half the time typical of classroom
instruction), whereas other subjects did not. Cronback and Snow (1977) reported that high-aptitude
subjects learn better when they can control the learning environment to process information in their own
way, whereas low-aptitude subjects tend to do worse when provided this control.

In another experiment reported by Shute (1992) involving 282 subjects, an automated tutoring system

taught simple electronics circuit analysis using two modes of feedback. In rule-induction feedback mode,
the tutoring system provided feedback that identified the relevant variables in the problem, but the student
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had to induce the relationships among the variables. In rule-application feedback mode, the feedback
explicitly stated the variables and their relationships for a given problem. Students then applied the rule
to the problem as directed by the feedback. This experiment showed significant interactions between the
student's cognitive aptitude (as measured by verbal, quantitative, and spatial associative learning skills),
the feedback mode presented to the student, and the student's performance in four post tests that measured
declarative knowledge acquisition and procedural skill acquisition. Specifically, low ability subjects
learned declarative skills more effectively when taught in rule-application mode and performed poorly in
procedural tasks regardless of feedback mode. By contrast, high ability students learned declarative skills
more effectively when taught in rule-induction mode, and they learned procedural skills more effectively
when taught in rule-application mode.

Hudlicka (1999) describes a Methodology for Analysis and Modeling of Individual Differences
(MAMID), which provides a generic method for representing a variety of individual differences factors in
human performance models. The proposed methodology consists of four steps: identification of cognitive
processes and structures mediating performance; design of a corresponding parameterized model;
identification of cognitive, affective, and personality factors affecting model processes; and encoding of
identified factors in terms of model parameters and knowledge bases. The MAMID methodology is being
implemented within an integrated simulation environment, providing a testbed for analysis of distinct
individual profile effects on task performance. The demonstration scenario involves an Army COA
execution task, which is particularly susceptible to individual differences variations. MAMID is
applicable to both individual and team settings, and can be incorporated within a variety of agent
architectures.
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Appendix A: Demo Scripts

To run the Helicopter tutor:

1. Insert the Microsoft Flight Simulator 2000 CD number 2 into the CD-ROM drive and invoke

Microsoft Flight Simulator. Press the "Fly Now!" button.

2. Select the Aircraft/Select Aircraft menu choice to select the Bell 206B JetRanger helicopter.
Select the Flights/Save Flight menu choice to save this flight and make this aircraft your default.
Run C:\HeloTutor\HeloTutor.exe.

4. When the Tutor displays the login window, select a student name from the list box and press
“OK”.

5. Merlin, the speech-to-text agent, will verbalize the Tutor's reasoning as it selects and configures a
lesson. The agent will then deliver the lesson briefing. You can minimize the HeloTutor
application window.

6. In the Microsoft Flight Simulator 2000 menu, select the Flights/Multiplayer-Connect menu
choice. A “multiplayer connect” window will popup. Select "TCP/IP" in the Protocol list.
Select “Lesson-007" in the Sessions list, and click the “Join” button. This action establishes a
connection between the MS Flight Simulator and the Helicopter Tutor program.

7. All the flight parameters will be displayed in a list in the HELOTUTOR window. If you want to

save all these data, check “Log Data” in the HELOTUTOR window before running the simulator.

Press P to resume the simulator and start the lesson.

9. To exit the program, first disconnect Microsoft Flight Simulator 2000 from it by selecting
Flights-Multiplayer-Disconnect in the menu, close the Microsoft Flight Simulator 2000, then
click the “x” button on the right top corner of the HELOTUTOR window.

10. To log in as another student, select the Flights/Multiplayer-Disconnect menu choice, exit from the
Helicopter Tutor application, re-invoke the Helicopter Tutor application, log-in as another
student, and select the MS Flight Simulator Flights/Multiplayer-Connect menu choice to
reconnect to the Helicopter Tutor.

bt

*®

An example student model file is shown below. In an actual system, this student model would be read
from a file or database at the beginning of each session, updated during the session, and saved to the file
or database at the end of the session.

(deffacts student-bill

(skill-level (skill hover) (automaticity NIL) (proficiency low))
(skill-level (skill control-heading) (automaticity NIL) (proficiency medium))
(skill-level (skill control-xy-position) (automaticity NIL) (proficiency medium))
(skill-level (skill control-altitude) (automaticity high) (proficiency high))
(skill-level (skill perceive-heading) {(automaticity high) (proficiency high))
(skill-level (skill perceive-xy-position) (automaticity high) (proficiency high))
(skill-level (skill perceive-altitude) (automaticity high) (proficiency high))
(skill-level (skill straight-level) (automaticity NIL) (proficiency low))
(skill-level (skill control-direction) (automaticity NIL) (proficiency medium))
(skill-level (skill control-speed) (automaticity high) (proficiency high))

{student-profile P

(student-name Bill)

(student-summary "Bill is in his tenth week of training. His proficiency in hover
flight is less than nominal.
His proficiency in subskills control-altitude and control XY position are only
medium.")

(preferred-speaking-speed 160)

(num-weeks-in-training 10))

)

After the student model file is selected, the program selects and configures an appropriate lesson, based
upon the proficiencies and automaticities estimated for each skill, the number of weeks of training
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acquired by the student, and other attributes. The reasoning process by which the tutor selects and
configures lessons for each student is shown in the logs below.

A.1  Student Bill

Bill is in his tenth week of training. His proficiency in hover flight is less than nominal. His proficiency
in subskills control-altitude and control XY position are only medium. Proficiency of skill control-
heading is medium and the nominal proficiency for students in week 10 of training is high.

Lesson selection - log of the AIS's reasoning

1. Considering lesson straight-level to increase proficiency in skill control-heading.

2. Proficiency of skill centrol-xy-position is medium and the nominal proficiency for students in
week 10 of training is high.

Considering lesson straight-level to increase proficiency in skill control-xy-position.

Proficiency of skill hover is low and the nominal proficiency for students in week 10 of training
is medium.

5. Creating a goal of increasing proficiency in sub-skill control-heading of skill hover.

6. Considering lesson straight-level to increase proficiency in skill control-heading.

7. Creating a goal of increasing proficiency in sub-skill control-xy-position of skill hover.

8

9.

1

Ll e

Considering lesson straight-level to increase proficiency in skill control-xy-position.
Considering lesson hover to increase proficiency in skill hover.
0. Selecting best lesson: straight-level. Objective is to learn skill control-heading. Importance = 3.

Lesson configuration - log of the AIS's reasoning

11. Proficiency in controlling altitude is high. Setting altitude tolerance to 20.0 feet.
12. Proficiency in controlling speed is high. Setting speed tolerance to 5.0 knots per hour.
13. Proficiency in controlling direction is medium. Setting direction tolerance to 10.0 degrees.

Lesson briefing delivered to the student

Bill, please perform straight and level flight. Take off and reach altitude of 2000.0 plus or minus 20.0
feet. Maintain direction of 180.0 plus or minus 10.0 degrees. Accelerate to 50.0 plus or minus 5.0 knots
per hour.

A.2 Student Bob

Bob is in his third week of training. His proficiency in all skills is low. He prefers to be spoken to slowly.
Proficiency of skill control-heading is low and the nominal proficiency for students in week 3 of training
is medium

Lesson selection - log of the AIS's reasoning

1. Considering lesson straight-level to increase proficiency in skill control-heading.

2. Proficiency of skill control-xy-position is low and the nominal proficiency for students in week 3
of training is medium.

3. Considering lesson straight-level to increase proficiency in skill control-xy-position.

4. Selecting best lesson: straight-level. Objective is to learn skill control-heading. Importance = 1.

Lesson configuration - log of the AIS's reasoning
5. Proficiency in controlling altitude is low. Setting altitude tolerance to 100.0 feet.
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6. Proficiency in controlling speed is low. Setting speed tolerance to 20.0 knots per hour.
7. Proficiency in controlling direction is low. Setting direction tolerance to 20.0 degrees.

Lesson briefing delivered to the student

Bob, please perform straight and level flight. Take off and reach altitude of 2000.0 plus or minus 100.0
feet. Maintain direction of 180.0 plus or minus 20.0 degrees. Accelerate to 50.0 plus or minus 20.0 knots
per hour.

A.3  Student Dave

Dave is in his tenth week of training. His proficiency in hover flight is less than nominal. His proficiency
and automaticity in subskills of hover flight are generally high except for the subskill of controlling x y
position, whose automaticity is unknown. Proficiency of skill hover is low and the nominal proficiency
for students in week 10 of training is medium

Lesson selection - log of the AIS's reasoning

1. Considering lesson straight-level to estimate the automaticity of skill control-xy-position.

2. Considering lesson hover to increase proficiency in skill hover.

3. Selecting best lesson: straight-level. Objective is to estimate-skill-automaticity skill control-xy-
position. Importance = 3.

Lesson configuration - log of the AIS's reasoning

4. Proficiency in controlling altitude is high. Setting altitude tolerance to 20.0 feet.
5. Proficiency in controlling speed is high. Setting speed tolerance to 5.0 knots per hour.
6. Proficiency in controlling direction is high. Setting direction tolerance to 10.0 degrees.

Lesson briefing delivered to the student

Dave, please perform straight and level flight. Take off and reach altitude of 2000.0 plus or minus 20.0
feet. Maintain direction of 180.0 plus or minus 10.0 degrees. Accelerate to 50.0 plus or minus 5.0 knots
per hour. During this task, please count from 1 to 1000 by 4.

Note

Program instructed the student to carry out an (admittedly unrealistic) auxilliary task of counting from 1
to 1000 by 4 to estimate the automaticity with which Dave can perform this task.

A4 Student John

John is in his twentieth week of training. His performance today is poorer than usual.

Lesson selection - log of the AIS's reasoning

1. Proficiency of skill hover is medium and the nominal proficiency for students in week 20 of
training is high.

Consider possibility that the cause of today's poor performance is that the student is tired.
Consider possibility that the cause of today's poor performance is low motivation.

Considering lesson hover to increase proficiency in skill hover.

Selecting best lesson: hover. Objective is to learn skill hover. Importance = 1.

ANl ol N
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Lesson configuration - log of the AIS's reasoning

6. Hover proficiency is medium. Setting altitude tolerance to 20.0 feet. Setting drift tolerance to
20.0 feet. Setting heading tolerance to 10.0 degrees.

Lesson briefing delivered to the student.

John, please perform a hover. Take off and reach altitude of 800.0 plus or minus 20.0 feet. Stay within
20.0 feet of the target hover position. Maintain heading of 180.0 plus or minus 10.0 degrees.

Note

Program displays a visual aid that shows a bird's eye view of the helicopter's position and heading relative
to the hover target position and heading. The display shows standard drift tolerances as well as target
tolerances based upon the student's current hover proficiency level.

A.S Student Sue

Sue is in her tenth week of training. Her proficiency in hover flight is less than nominal.

Lesson selection - log of the AIS's reasoning

1. Her proficiency and automaticity in subskills of hover flight are high.

2. Proficiency of skill hover is low and the nominal proficiency for students in week 10 of training
is medium.

3. Considering lesson hover to increase proficiency in skill hover.

4. Selecting best lesson: hover. Objective is to learn skill hover. Importance = 1.

Lesson configuration - log of the AIS's reasoning

5. Hover proficiency is low. Setting altitude tolerance to 100.0 feet. Setting drift tolerance to 100.0
feet. Setting heading tolerance to 20.0 degrees.

Lesson briefing delivered to the student.

Sue, please perform a hover. Take off and reach altitude of 800.0 plus or minus 100.0 feet. Stay within
100.0 feet of the target hover position. Maintain heading of 180.0 plus or minus 20.0 degrees.

Note
Program displays a visual aid that shows a bird's eye view of the helicopter's position and heading relative
to the hover target position and heading. The display shows standard drift tolerances as well as target

tolerances based upon the student's current hover proficiency level. Sue's proficiency is lower than
John's, so the program selected wider target drift tolerances.
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